
GPM: Leveraging Persistent Memory from a GPU
Aditya K Kamath, Shweta Pandey, Arkaprava Basu

PmemKV RocksDB-KVS MatrixKV GPM-KVS

2.7x 5.8x3.1x

Intel RocksDB Matrix MegaKV
PMKV PM KV +GPM

2.5

2.0

1.5

1.0

0.5

0

Th
ro

u
gh

p
u

t
(M

o
p

s/
s)

(a) Throughput of persistent KVS.

0

10

20

30

BFS SRAD PS

BFS SRAD PS

2.8

19.2

27

Sp
e

ed
u

p
 o

ve
r

C
P

U
(b) Speedup over CPU PM apps.

Figure 1: Benefits of GPU with PM.

Non-volatile memory (NVM) technologies promise to blur
the long-held distinction between memory and storage by
enabling durability at latencies comparable to DRAM [7].
NVM enables fine-grain byte addressable persistence accessible
via loads and stores. We define Persistent Memory (PM) as NVM

accessed via load/stores at byte granularities [5]. Thanks to
decade-long research into CPU’s software and hardware stack
for PM (e.g., [4, 9]), and with the recent commercialization of
Intel Optane NVM, PM’s promise of revolutionizing computing
seems closer to the reality.
Motivation: Unfortunately, while Graphics Processing Units
(GPUs) are key computing platform today, they are deprived of
direct access to PM. We find several important applications that
could have benefited from both GPUs and PM. Consider a per-
sistent key-value store (KVS) that leverages PM for persistence
and recoverability from crashes. Today, they are limited to
CPUs [8, 2, 10]. Independently, researchers found GPUs can
significantly increase KVS’s throughput [11]. Fine-grain persis-
tence to PM from GPUs could enable both together. Figure 1a
provides a glimpse of its potential performance benefits. The
first three bars show throughputs of batched SET operations
(8B keys and values) on PM-optimized commercial (Intel’s
pmemKV [2]) and RocksDB-pmem [8]) and academic KVSs
(MatrixKV [10]) on many core CPU. The fourth bar reports
throughput with a GPU-enabled KVS, MegaKV [11], ported
onto our system, called GPM, to use PM. GPM enables fine-grain
persistence for GPU kernels. The throughput improves by
2.7×-5.8× over today’s multi-threaded CPU alternatives for
persistent KVS while retaining same recoverablity guarantee.

Many other applications, e.g., breadth-first search (BFS),
image processing (SRAD), prefix sum (PS) could benefit from
both fine-grain persistence and GPU’s parallelism. They speed
up by 2.8-27× over multi-threaded CPU versions of the same
applications leveraging PM for recoverability (Figure 1b).

Today, if an application wishes to leverage PM’s persistence,
it would typically perform both the computation and ensure
persistence of results from the CPU. Alternatively, one can per-
form computations on the GPU, but then transfer results to the
CPU’s memory and rely on the CPU to guarantee persistence
for recoverability. We call this alternative that at least uses the
GPU for computation, CPU-Assisted Persistence (CAP).

Unfortunately, CAP fails to bring the full benefits of byte-
grain low-latency persistence to GPU kernels. GPU’s inability
to efficiently guarantee persistence of PM-resident data struc-
tures at byte granularities impedes programmers from creating
recoverable GPU kernels that can correctly restart after a crash
during GPU execution. Second, GPUs accelerate computation
through massive parallelism. Many benefits of parallelism
are lost by relying on the CPU to write and persist results
of GPU computations. Third, many times only a fraction of
data is updated during computation. However, which data
would be updated is not known apriori. Since the GPU cannot
directly persist results while computing, extraneous data could
be transferred to and persisted by the CPU.

Towards this, we set three goals. 1© Design a system with
a GPU having direct access to PM without needing new hard-
ware. It should address all of CAP’s shortcomings. 2© Explore
types of applications that can benefit from both GPU and fine-
grained persistence. 3© Finally, create a software ecosystem
(e.g., library, runtime) that could help programmers easily and
efficiently program PM from a GPU kernel.
Key insights: Towards the first goal, we propose GPU with
PM or GPM where GPU kernels can directly manipulate PM-
resident data and guarantee persistence wherever desired
within the kernel, without needing the CPU or the OS. Cur-
rently, there exists no hardware with NVM onboard the GPU.
The NVM (Intel Optane [1]) is placed alongside the DRAM,
as in a typical Intel Xeon-based server, and can be accessed
by a GPU over the PCIe interconnect. GPM leverages NVIDIA’s
Uniform Virtual Address (UVA) to map desired portions of
NVM onto the virtual address space of a GPU kernel. Kernels
could then manipulate PM-resident data structures at a byte
granularity using GPU loads/stores.

To compose programs that are recoverable in the presence
of crashes or power failures, a programmer must be able to
guarantee persistence of data to PM (i.e., persist) wherever
programs’ semantics demand. A persist operation typically
requires flushing the contents of volatile cache lines to PM

and waiting for flushes to finish. Unfortunately, unlike CPUs,
today’s GPUs are not designed for PM and do not have instruc-
tions to flush cache lines [6]. However, we noticed that a fence
operation with system scope (__threadfence_system() in CUDA)
ensures all writes to host (system) memory before the fence
are made visible on the host (CPU) when the fence completes.
While the original purpose of that fence was to synchronize
computations between the CPU and GPU, it provides seman-
tics needed for persist operations. This is because in GPM, the
NVM is a part of the host memory, alongside DRAM.

However, a system-scoped fence alone is insufficient to cre-
ate persist operations in GPUs. When Intel’s Xeon processor’s
Data Direct IO (DDIO) feature is enabled (default), the writes

to system memory by devices, e.g., NIC, GPU, are cached in
the CPU’s volatile last level caches (LLCs) [3]. Consequently,
the fence completes as soon as writes reach LLC, and not PM.
Therefore, GPM selectively disables DDIO when persistence is
desired. Consequently, the system-scoped fence completes
only when persistence of the writes to PM is guaranteed.

In short, we use UVA to map PM to the GPU’s address space,
and system-scoped fences with selective disabling of DDIO

to create GPM on Xeon servers with Optane NVM and NVIDIA

GPUs. GPM mitigates CAP’s shortcomings. GPM’s ability to
guarantee persistence from the GPU enables programmers to
write recoverable kernels. Applications benefit from both the
GPU’s parallelism and fine-grained persistence without CPU
or OS involvement. Finally, on GPM, kernels can persist only
the necessary parts of (intermediate) results while computing.

Towards the second goal of exploring applications that
benefit from both GPUs and fine-grained persistence, we
find three categories of applications. Transactions in GPU-
accelerated persistent KVS and relational databases benefit
from fine-grained logging to PM. Next, long-running applica-
tions that iteratively invoke GPU kernels, e.g., DNN training,
benefit from faster checkpointing to PM for fault tolerance. Fi-
nally, GPM enables a new class of GPU kernels that embed the
logic to perform in-place byte-grained updates to PM-resident
data structures while ensuring they remain recoverable (con-
sistent) after a crash. These kernels can then resume, rather
than restart computation upon recovery from a crash. GPU-
accelerated BFS on PM-resident graphs is an example. In the
process, we created a workload suite, named GPMbench, with
9 GPU workloads that leverage PM’s persistence.

Our third contribution is a CUDA library (libGPM) that im-
plements GPU-optimized write-ahead logging to implement
transactions, checkpointing to PM, and ordering persist opera-
tions. A key innovation in libGPM is Hierarchical Coalesced
Logging (HCL) with two GPU-specific optimizations.

To scale logging to GPU, where each of its tens of thou-
sands of threads may attempt to insert entries into the log
concurrently, HCL mimics the GPU’s execution hierarchy in
the structure of its log. On a NVIDIA GPU, a group of 32 threads,
called a warp, typically execute in lockstep. Tens of warps are
organized into a threadblock, and many threadblocks consti-
tute a grid. In HCL, each GPU thread computes a unique offset
in the log to insert its entry based on its thread ID, warp ID,
and threadblock ID. Since every thread, warp, threadbock has
a fixed offset(s) in the log for inserting its entry, the logging
can proceed in a data-parallel manner without requiring locks.

Another key innovation in HCL is how it leverages the GPU’s
hardware coalescer. HCL ensures that log entries written by
threads of a warp in SIMD fashion are packed into a single
GPU cache line. Thus, concurrent writes to the log by a warp
are merged into a single write by the hardware coalescer. Since
a typical GPU cache block is 128-byte long and there are 32
threads in a warp, HCL ensures each thread writes its log in 4-
bytes chunks. HCL stripes larger log entries into 4-byte chunks

0

2

4

6

8

10

gpKVS GPU-DB DNN CFD BLK HS BFS SRAD PSSp
e

e
d

u
p

 o
ve

r
C

A
P

85

gpKVS gpDB DNN CFD BLK HS BFS SRAD PS

Transactional Checkpointing Native

16 17 11 18

Figure 2: Speedup of GPM normalized to CAP.

over multiple cache lines. HCL speeds up logging by ∼ 3.6×
over traditional distributed logging on average.

Besides logging, libGPM provides primitives for persistence
by enabling means for (de-)allocating GPU-accessible mem-
ory on PM, flushing and draining data to PM and also supports
checkpoint/restoration from the GPU.

Figure 2 shows GPM provides multi-fold speedup over CAP.
gpKVS speeds up by 7-8× over CAP, due to GPM’s ability to
persist only the updated/new entries in pKVS, as GPM provides
in-kernel selective persistence. Checkpointing workloads, like
DNN, benefit from GPU’s massive parallelism when check-
pointing to PM. Native workloads, like BFS speedup from
GPM’s potential to directly write and persist data.
Citation of original paper: Shweta Pandey, Aditya K Ka-
math, and Arkaprava Basu. GPM: Leveraging Persistent Mem-
ory from a GPU. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2022).
DOI: https://doi.org/10.1145/3503222.3507758

References
[1] Intel. Intel optane persistent memory. https://www.intel.

in/content/www/in/en/architecture-and-technology/
optane-dc-persistent-memory.html, 2021.

[2] Intel. Intel pmemkv, 2021. https://github.com/pmem/pmemkv.
[3] A. Kalia, D. Andersen, and M. Kaminsky. Challenges and solutions

for fast remote persistent memory access. In Proceedings of the 11th
ACM Symposium on Cloud Computing, SoCC ’20, page 105–119, New
York, NY, USA, 2020. ACM.

[4] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram. Recipe:
Converting concurrent dram indexes to persistent-memory indexes.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, New York, NY, USA, 2019. ACM.

[5] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton.
An analysis of persistent memory use with whisper. In Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’17,
page 135–148, New York, NY, USA, 2017. ACM.

[6] NVIDIA. Cuda c++ programming guide. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/, 2019.

[7] I. B. Peng, M. B. Gokhale, and E. W. Green. System evaluation of the
intel optane byte-addressable nvm. In Proceedings of the International
Symposium on Memory Systems, MEMSYS ’19, page 304–315, New
York, NY, USA, 2019. ACM.

[8] RocksDB. Rocksdb. 2021. https://rocksdb.org/.
[9] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight

persistent memory. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’11, New York, NY, USA, 2011. ACM.

[10] T. Yao, Y. Zhang, J. Wan, Q. Cui, L. Tang, H. Jiang, C. Xie, and
X. He. Matrixkv: Reducing write stalls and write amplification in
lsm-tree based KV stores with matrix container in NVM. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 17–
31. USENIX Association, July 2020.

[11] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang. Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores. Proc. VLDB Endow., 8(11):1226–1237, July 2015.

2

https://doi.org/10.1145/3503222.3507758
https://www.intel.in/content/www/in/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.in/content/www/in/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.in/content/www/in/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/pmem/pmemkv
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://rocksdb.org/

