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Abstract—GPUs have emerged as a key computing platform for
an ever-growing range of applications. Unlike traditional bulk-
synchronous GPU programs, many emerging GPU-accelerated
applications, such as graph processing, have irregular interac-
tion among the concurrent threads. Consequently, they need
complex synchronization. To enable both high performance
and adequate synchronization, GPU vendors have introduced
scoped synchronization operations that allow a programmer to
synchronize within a subset of concurrent threads (a.k.a., scope)
that she deems adequate. Scoped-synchronization avoids the
performance overhead of synchronization across thousands of
GPU threads while ensuring correctness when used appropriately.
This flexibility, however, could be a new source of incorrect
synchronization where a race can occur due to insufficient
scope of the synchronization operation, and not due to missing
synchronization as in a typical race.

We introduce ScoRD, a race detector that enables hardware
support for efficiently detecting global memory races in a GPU
program, including those that arise due to insufficient scopes of
synchronization operations. We show that ScoRD can detect a
variety of races with a modest performance overhead (on average,
35%). In the process of this study, we also created a benchmark
suite consisting of seven applications and three categories of
microbenchmarks that use scoped synchronization operations.

Index Terms—Graphics processing units, Parallel program-
ming, Software debugging

I. INTRODUCTION

Today, Graphics Processing Units (GPUs) serve as the
primary computing platform for a wide range of application
domains. The massive data parallelism of GPUs had initially
been leveraged by highly-structured parallel tasks such as
matrix multiplication, where the interactions among the concur-
rent threads are regular and relatively infrequent. Such regular
applications could use the GPU’s coarse-grain bulk synchronous
model [1] of execution very well, with little need for advanced
synchronization operations.

In recent times, however, a broader range of application
domains such as graph processing, deep learning, weather
modeling, data analytics, computer-aided-design, and compu-
tational finance have started using GPUs [2]. Many of these
emerging applications often entail irregular interactions among
the concurrent threads. To fulfill the synchronization needs
of such applications, modern GPU programming languages
and hardware have enabled semantically rich synchronization
primitives such as various flavors of atomic, fence, barrier, and
acquire/release operations.

*Authors contributed equally.

However, it is hard to efficiently support globally visible
synchronization operations across thousands of concurrent
threads in a GPU. Fortunately, global synchronization is
often unnecessary in GPU programs [3]–[5]. Popular GPU
programming languages – CUDA and OpenCL – expose a
hierarchical programming paradigm. They group threads into
threadblocks (workgroup in OpenCL); many threadblocks
make up a grid. Further, the hardware typically schedules
a group of 32 to 64 threads, called warp or wavefront, to
execute in a SIMT (single-instruction multiple-thread) fashion.
Consequently, GPU programs are often naturally written in
a way that requires communication only within a subset of
threads at a given level in the hierarchy.

GPU programming languages, thus, expose synchronization
operations with non-global side effects. Both CUDA and
OpenCL expose different scope qualifiers that can be used
with synchronization operations. A scope identifies the subset
of concurrent threads that are guaranteed to observe the effect
of the synchronization. CUDA exposes three scopes – block,
device and system [6]. For example, an atomic read-modify-
write (RMW) operation (a.k.a., atomic) with block scope is
only guaranteed to affect threads within the same threadblock
as the thread executing the RMW. If the scope were device, all
the threads in the kernel running on the GPU would observe
the effect of the operation. An even wider scope – system
– affects all threads of a program spread over the CPU and
multiple GPUs. OpenCL supports similar scopes too [7].

GPU hardware resources are also arranged in a hierarchy
that naturally lends itself well to scoped synchronization.
For example, threads belonging to the same threadblock are
scheduled on a single streaming multiprocessor (SM). Threads
in an SM share an L1 cache and a scratchpad memory. Threads
within a threadblock can thus communicate much faster than
those in different threadblocks, executing on different SMs.
Consequently, a synchronization operation with block scope
executes faster than one with device or system scope.

A GPU programmer can use scoped synchronization opera-
tions to efficiently synchronize across only a subset of threads
as per the semantic requirement of the program. While scoped
operations add an essential capability for balancing the need
for synchronization and performance, they also open up a
new dimension that the programmer needs to worry about
for writing correctly synchronized programs. We declare the
scope of a synchronization operation to be insufficient if it does
not encompass both the producer and the consumer that the



operation intends to synchronize. We call races that arise due to
the insufficient scope of a synchronization operation as scoped
races. For example, let us assume two threads perform an
atomicExch operation on the same variable with block scope.
If these threads belong to different threadblocks, then they
may not observe the effect of each other’s atomic operation.
Consequently, a scoped race will arise.

Decades of prior research have demonstrated that writing a
correct multi-threaded program is hard [8]–[10]. Consequently,
there has been a plethora of software tools and hardware
support for detecting races in multi-threaded CPU programs [8],
[10]. Arguably, writing a correct GPU program with orders
of magnitude more threads is even harder, especially if it
involves irregular interactions between threads. Realizing the
need for tools to detect incorrectly synchronized GPU programs,
researchers have proposed software tools and hardware support
in recent times [11]–[14].

Unfortunately, the current set of tools falls short in one
way or the other. More importantly, they mostly ignore scoped
races. Tools such as NVIDIA’s CUDA-Racecheck [15], GRace
[16], or GMRace [13] limit themselves to detecting races
that can occur among the threads within a threadblock via
the scratchpad memory, and ignore the relatively harder class
of races via global memory. More recently, researchers have
proposed dynamic binary instrumentation, e.g., Barracuda [12],
and/or static compilation time hints, e.g., CURD [11], to detect
races in global memory. However, being pure software tools,
they typically incur 2×-1000× performance overhead. More
importantly, they largely ignore scoped races. For example,
Barracuda considers scopes in only fence operations while
ignoring them for other synchronization operations such as
atomics. Researchers have also recently proposed hardware
support to detect races in GPU programs, but it completely
ignores scoped races [14]. The shortcomings of these works
are summarized in Table VIII of Section VII.

In this work, we thus propose ScoRD (Scoped Race
Detector), an efficient hardware-based detector for scoped
races, and any other global memory races in GPU programs.
While we focus on CUDA to make discussions concrete,
ScoRD’s design is not limited to CUDA only. In CUDA,
both atomic RMW and fence operations can be qualified
with scopes, and consequently, their use can cause scoped
races. ScoRD extends the well-known happens-before race
detection [17] with the notion of scope to detect scoped races
due to atomics and fences. Further, the CUDA guidebook
suggests [18]–[20] that programmers can combine atomic
RMWs and fences to constitute lock and unlock operations in
the absence of acquire/release operations in current versions
of CUDA*. ScoRD thus dynamically infers lock and unlock
operations and extends lockset-based mechanisms [8], [10]
with the notion of scope to detect races on data items protected
by locks. While we focus on scoped races, ScoRD detects
global memory races due to missing synchronizations too, as

*A recent version of PTX, i.e., PTXv6.0 introduced acquire/release instructions,
but the latest CUDA specification (v10) is silent on how to use them as of
yet [6], [21].

detection for scoped races naturally subsumes any global race
detection.

ScoRD introduces small hardware state (less than 3KB) to
hold information on active synchronization operations along
with the logic for detecting races in the GPU. As GPUs often
concurrently execute thousands of threads, tracking happens-
before interactions [22] among each pair of threads is not
scalable, unlike in CPU. ScoRD thus, further keeps metadata
for each unit of global memory (here, at the granularity of
4 bytes) to track the identity of the last accessor of the
memory location along with relevant synchronization and scope
information. This metadata is kept in the global memory of
the GPU. A naive approach, however, would incur significant
memory overheads due to metadata (e.g., up to 2×). We observe
that races typically occur among memory accesses that happen
relatively close to each other in time. Further, only a small
fraction of allocated memory participates in a race. We thus
only keep the metadata for recently accessed memory addresses,
using a direct-mapped software cache. This helps us reduce
metadata overhead by 16×, to a reasonable 12.5% without
greatly sacrificing the accuracy of race detection.

A challenge in thoroughly evaluating ScoRD, though, is
the lack of an open-source benchmark suite with copious
use of scoped synchronization operations. As newer GPUs
support an ever-increasing number of concurrent threads,
global synchronization is becoming costlier. Consequently,
CUDA and OpenCL are continually enhancing support for
scoped operations. However, open-source applications are
understandably slow to catch up to the use of evolving
scoped synchronization operations. We thus created the ScoR
benchmark suite, comprising of seven applications and thirty-
two microbenchmarks. The applications in ScoR can be
configured to omit proper synchronization operations to create
up to twenty-six unique races. We use ScoR to perform a
thorough evaluation of ScoRD.

ScoRD incurs low performance overhead (35% on average)
with no false positives. Moreover, ScoRD can be turned on
only during software testing or debugging and can be turned
off during production run to avoid overheads.

In summary, we make the following contributions.

• We detail ScoRD, a hardware-based scoped race de-
tector for reporting races in GPU programs with low-
performance overhead. To the best of our knowledge,
ScoRD is the first of its kind.

• We create ScoR benchmark suite containing several
applications and microbenchmarks that make use of scoped
synchronization primitives. We open-sourced ScoR to aid
future research†.

II. BACKGROUND AND THE BASELINE

To appreciate this work, some background on the GPU’s
execution hierarchy, its synchronization operations, and a bit
about its memory consistency model would be useful.

†Available at https://github.com/csl-iisc/ScoR/

https://github.com/csl-iisc/ScoR/
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Fig. 1: Baseline GPU system architecture.

A. Execution hierarchy in a GPU

GPUs are designed for massive data-parallel processing
that operates on hundreds to thousands of data elements
concurrently. A GPU’s hardware resources are organized in a
hierarchy to keep its vast parallelism tractable.

Figure 1 (a) depicts the architecture of a typical GPU
hardware. Streaming multiprocessors (SMs) are the basic
computational blocks of a GPU, with typically around 8
to 64 SMs in a GPU. Each SM includes multiple single
instruction, multiple data (SIMD) units, which have multiple
lanes of execution (e.g., 16-32). A SIMD unit executes a single
instruction across all lanes in parallel. The memory resources
of a GPU are also arranged hierarchically. Each SM has a
private L1 data cache and a scratchpad that is shared across the
SIMD units within the SM. When several data elements being
requested by a SIMD instruction reside in the same cache line,
a hardware coalescer combines the requests into a single cache
access to gain efficiency. A larger L2 cache is shared across
all the SMs through an interconnect.

GPU programming languages, such as OpenCL and CUDA,
expose a hierarchy of execution groups to the programmer
that follows the hierarchy in the hardware (Figure 1 (b)). In
CUDA parlance, a thread is akin to a CPU thread and is the
smallest execution entity that runs on a single lane of a SIMD
unit. A group of threads, typically 32, forms a warp, which is
the smallest hardware-scheduled unit of work that executes in
SIMT fashion. Several warps make up a threadblock, which is
programmer visible. All threads in a threadblock are scheduled
on the same SM. Finally, work on a GPU is dispatched at the
granularity of a grid, which comprises of several threadblocks.

B. Synchronization in GPUs

To make the discussion on synchronization concrete, we
will pivot around CUDA. However, most of these concepts are
equally applicable to OpenCL too.

In the early days, GPUs were primarily used for regular bulk-
synchronous compute tasks. Consequently, one of the primary
and often used synchronization primitives is a barrier (e.g.,

syncthreads in CUDA). A barrier ensures that threads wait
until all threads in the threadblock have reached the barrier,
and all global and shared memory accesses made by these
threads before the barrier are visible to all threads in the block.
While a barrier acts as an execution barrier across the threads
in the block and also enforces ordering of memory accesses,
a memory fence (e.g., threadfence) does only the latter.
Specifically, a fence ensures that all writes to all memory made
by the calling thread before the fence is visible to other threads.

While fences are necessary to ensure that the intended
consumer of a data item observes the latest value, it may not be
sufficient alone. For example, after completing a store followed
by a fence, one may expect that other threads reading from the
same location would obtain the updated value. However, this
may not be the case in modern GPUs, since upper-level caches
(e.g., L1 caches) and buffers are not kept coherent by hardware,
unlike in CPUs. Therefore, while the store may have reflected
on the shared cache, a consumer thread may have a stale copy
of it in its local L1 cache. The onus of avoiding such stale
reads is with the programmer. Specifically, CUDA provides
the volatile qualifier that ensures memory operations bypass
non-coherent caches and intermediate buffers. These qualified
memory operations are referred to as strong operations by
NVIDIA. In fact, CUDA programming guide suggests that
fences guarantee ordering only for strong operations [6].

CUDA also supports atomic read-modify-write operations
of various flavors. For example, atomicExch allows a thread
to read a value stored in the memory and write a new value
to that address such that no other thread can interfere until the
entire operation is complete. Atomic operations are often used
to create locks. The atomic operations in CUDA are relaxed
in nature; i.e., they do not enforce any ordering guarantees.
For example, an atomic does not ensure that writes occurring
before it would be visible to other threads. Thus, lock/unlock
operations in CUDA comprise of an atomic (for updating the
lock variable) and a fence (for ordering). It is worthwhile to
note that atomics are inherently strong operations since they
take effect at the shared level of cache, bypassing possibly
incoherent intermediate caches.

In a recent version of PTX, v6.0, NVIDIA also added
support for two more synchronization operations – acquire and
release. An acquire operation makes the effect of memory
operations (e.g., loads/stores) from other threads visible to
operations after the acquire in the current thread. A release
operation makes the effect of operations by the thread executing
the release visible to other threads. Acquire and release
operations are typically used for lock and unlock operations,
respectively. While earlier versions lack these instructions,
acquire/release can be synthesized using atomic and fence
operations. NVIDIA states that an acquire pattern is equivalent
to an atomic operation on the lock variable (e.g., atomicCAS)
followed by a fence [20], [21], [23]. A release can be composed
of a fence followed by an atomic operation (e.g., atomicExch).
Scoped synchronization: Unlike in a CPU, a GPU typically
has tens of thousands of concurrent threads. Consequently,
global synchronization across all threads is slow in a GPU.
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Fig. 2: Work stealing. Effect of stealing shown in blue.

Further, it is often unnecessary to synchronize across all threads
in a kernel, owing to the GPU’s hierarchical programming
paradigm. Thus, GPU vendors have enabled the ability to
synchronize across a subset of concurrent threads. For example,
in CUDA, atomic and fence operations support three different
scopes – block, device and system. An operation performed
with a given scope is only guaranteed to be visible to threads
that fall within the scope of that operation. For example, a
fence performed with block scope is only guaranteed to affect
the threads within the threadblock to which the issuing thread
belongs. A device-scope operation is only guaranteed to affect
all threads in a GPU for a given program. If a system has
multiple GPUs and a program spans multiple GPUs, then
system scope affects threads across different GPUs, as well as
the CPU belonging to a given program. Like CUDA, OpenCL
also supports very similar scopes for synchronization operations.
In this work, we ignore the system scope without any loss of
generality.

C. GPU memory consistency models

Memory consistency models define which values from
memory operations are illegal and which are legal [24].
A weaker memory model allows a larger set of possible
outcomes from concurrent operations, while a stricter model
allows a smaller number of reordering of memory operations.
Synchronization operations enable a programmer to enforce
desired ordering that may not be implicitly enforced by the
consistency model of the system.

Several published works on GPU memory consistency
models take scoped synchronization operations into account [3]–
[5]. In this work, we assume the Heterogenous-Race-Free
(HRF)-relaxed-indirect memory consistency model [5], and our
simulation framework enforces this memory model. At a high
level, HRF-indirect allows transitivity of scopes – if a thread
A is synchronized with a proper scope with thread B and later
thread B synchronizes with thread C, then thread A and thread
C have effectively synchronized as well. Scope-inclusion allows
synchronization without requiring the scopes of operations in
participating threads to be exactly the same, as long as the
scopes of both the consumer and producer threads include each
other. We refer readers to [3], [5] for an an in-depth discussion
on GPU consistency models.

III. SCOPED GPU RACES AND SCOR BENCHMARK SUITE

A race on a global memory location occurs if two threads per-
form conflicting accesses (i.e., at least one of them write) to the
same memory location and if the accesses are not separated by
appropriate synchronization operations [25]. In the traditional
sense, e.g., in the CPU, races occur due to the complete absence
of necessary synchronization operations. In GPU programs,
however, a race can occur even if two conflicting accesses are
separated by synchronization operation(s) but of insufficient
scope – a.k.a. scoped races [3].

We first discuss different classes of scoped races possible in
GPU programs with the help of examples. We later describe
the benchmark suite we created that makes use of scoped
synchronization operations and can be configured to introduce
scoped races.

A. Classification of Scoped GPU races

To make the discussion concrete, we will focus on synchro-
nization operations available in CUDA v.8.0, and PTX v.5.0.
There, both atomic and fence operations can be qualified with
scope. Further, these two operations can be combined to create
lock/unlock operations providing mutual exclusion to code
regions [18]–[20]. The use of insufficient scopes in any of
these can create a scoped race. Therefore, a total of three types
of scoped races are possible as follows.
Scoped race due to atomic operation: If the producer thread
of a data item updates a global memory location using a scoped
atomic operation, but the consumer is outside that scope, we
declare a scoped race. To demonstrate how this race can
creep in, while optimizing code, we explore the use of scoped
atomics in a real application.

Let us consider a well-known graph processing algorithm
such as graph coloring, where the objective is to assign a color
to each node of a graph such that no two neighboring nodes
have the same color. In the implementation, each thread is
tasked to assign a color to one of the vertices. The work of
coloring thousands of vertices is equally partitioned among the
available threadblocks at the start of the execution. Typically,
the number of vertices in a partition far exceeds the number
of threads in a threadblock (e.g., 256), and thus, a threadblock
must iterate multiple times to color the vertices in its partition.
The number of vertices colored in each iteration is equal to
the number of threads in a threadblock (NTHREADS). This is
pictorially depicted in the top part of Figure 2. The array named
partitionEnd[] holds the index of the end of each partition in
the global array of vertices. The number of entries in the array
is equal to the number of threadblocks. The array currHead[]
holds the starting index of the set of vertices that are being
colored in the current iteration, while nextHead[] holds that
for the next iteration.

The amount of work to color a vertex varies depending on the
number of edges that are incident upon it. Consequently, thread-
blocks may take different amounts of time to color vertices in
their respective partitions. To reduce overall execution time,
a threadblock that finishes early can steal work from another



1 __device__ int getWork(...)
2 {
3 if(tid != 0) // Only lead thread assigns work
4 return -1;
5 // Get work from own local partition
6 currHead[blockId] =
7 atomicAdd(&nextHead[blockId],
8 NTHREADS); //device scope
9 // Work left in own partition?

10 if(currHead[blockId] < partitionEnd[blockId])
11 return currHead[blockId];
12 // Otherwise steal work
13 int victimBlock = getPartitionToStealFrom();
14 if(victimBlock == -1) // Check if successfully stole
15 return -1; //No work
16 currHead[blockId] =
17 atomicAdd(&nextHead[victimBlock],
18 NTHREADS);
19 if(currHead[blockId] <
20 partitionEnd[victimBlock])
21 return currHead[blockId];
22 return -1; //No work left
23 }

(a) Correct code (non-racey).

1 __device__ int getWork(...)
2 {
3 if(tid != 0) // Only lead thread assigns work
4 return -1;
5 // Get work from own local partition
6 currHead[blockId] =
7 atomicAdd_block(&nextHead[blockId],
8 NTHREADS); //block scope
9 // Work left in own partition?

10 if(currHead[blockId] < partitionEnd[blockId])
11 return currHead[blockId];
12 // Otherwise steal work
13 int victimBlock = getPartitionToStealFrom();
14 if(victimBlock == -1) // Check if successfully stole
15 return -1; //No work
16 currHead[blockId] =
17 atomicAdd(&nextHead[victimBlock],
18 NTHREADS);
19 if(currHead[blockId] <
20 partitionEnd[victimBlock])
21 return currHead[blockId];
22 return -1; //No work left
23 }

(b) Racey code due to insufficient scope.

Fig. 3: Use of scoped atomics in work stealing.

1 __global__ void reductionKernel(...)
2 {
3 ...
4 // Update array used within block
5 sdata[tid] = mySum + sdata[tid + 64];
6 __threadfence_block();
7 lock[tid] = 1
8 ...
9 while(lock[tid + 32] != 1);

10 __threadfence_block();
11 sdata[tid] = mySum + sdata[tid + 32];
12 ...
13 if (tid == 0) // Update global array with final sum
14 g_odata[blockIdx.x] = sdata[0];
15 __threadfence(); //device scope
16 //Scoped race if __threadfence_block used
17 ... // Wait for all blocks to finish
18 reduce(g_odata);
19 }

Fig. 4: Use of (non-racey) scoped fence.

block’s partition. The bottom part of Figure 2 depicts how a
threadblock (here, threadblock 0) that finished coloring vertices
in its partition steals work (a set of NTHREADS vertices) from
a partition belonging to threadblock 1.

Figure 3a shows pseudo-code for how a leader thread (here
thread id = 0) gets the set of vertices to be assigned colors
next, at the end of each iteration. The lines 6-8 shows how
the leader thread updates the currHead with the present value
of nextHead and atomically updates nextHead. Notice that
device scope (default) is used for the atomic. The lines 10-
11 checks if there are any more vertices left to color in the
threadblock’s original partition. If not, the leader thread would
steal work from another partition. It first determines which
threadblock’s (victimBlock) partition to steal work from (line
13). It then performs the stealing by updating nextHead[] of
victimBlock using device scope atomic operation (line 16-18).
Finally, it validates the stolen set before returning.

1 __global__ void searchTree(...)
2 {
3 while(atomicCAS_block( // Acquire block-scoped lock
4 &localStack.lock, 0, 1) != 0);
5 __threadfence_block();
6 Node parent = getNode(localStack); // Remove node
7 localStack.top++;
8 localStack.work--;
9 __threadfence_block(); // Release block-scoped lock

10 atomicExch_block(&localStack.lock, 0);
11 ...
12 while(0 != atomicCAS( // Acquire global lock
13 &globalStack[id].lock, 0, 1));
14 __threadfence();
15 Node parent = getNode(globalStack[id]);
16 globalStack[id].top++;
17 globalStack[id].work--;
18 __threadfence(); // Release global lock
19 atomicExch(&globalStack[id].lock, 0);
20 }

Fig. 5: Use of scoped lock/unlock (acquire/release pattern).

One may incorrectly presume that the use of a block-scope
atomic is sufficient when updating the nextHead[] if no work-
stealing is performed (lines 6-8 in Figure 3b). The leader thread
updates a variable used by threads within its block. This is
the common case as stealing happens only under the load
imbalance. However, this could lead to a subtle race if another
threadblock attempts to steal from the given block’s partition
(i.e., the victimBlock) at the same time when the victim itself is
assigning work from its own partition. The update by the leader
thread of the victimBlock would not be visible to the stealing
threadblock. This shows how subtle scoped races can seep into
the code while performance-optimizing an application.
Scoped race due to fence: After updating a global memory
location with the data item, if the producer thread executes
a scoped fence where the consumer is outside that scope, a
scoped race occurs. This is because the update by the producer
may not be observed by its intended consumer.



Let us consider an implementation of a reduction operation
that sums an array of a large number of integers to a single
value (relevant pseudo-code in Figure 4). Each threadblock
is responsible for calculating a partial sum of a sub-array of
elements of size twice the number of threads in a block. For
example, if there are 256 threads in a block, then each sub-
array will be of size 512 entries. In the first step, each thread
will sum one element from the first half of the sub-array with
the corresponding element in the second half. After this step,
it will reduce the sub-array to partial sums with 256 elements.
Next, 128 threads in the block will similarly compute partial
sums with 128 entries, and so on. The lines 5-6 shows how 64
threads reduce an array with 128 element to 64 elements. The
fence ensures that threads in the block observe the updated
partial sums before 32 threads start computing in the next
step. The block scope is enough as only threads in the same
threadblock consume the partial sums.

The code in lines 7-10 ensures that each thread waits for
the thread in the previous step whose results it will use in the
current step. Finally, once a threadblock finishes computing
on its subarray, it adds the partial sum to the global array
(g odata), as shown in lines 13-14. Since other threadblocks
can consume values in the global array, a device-scoped fence
is needed. A block-scoped fence would lead to a scoped race
(not shown).
Scoped race due to lock/unlock: If two threads attempt to
update the same global memory location within their critical
sections, but the scope of the lock/unlock operations do
not include both the threads, a scoped race occurs. As per
CUDA programming guide [18]–[20], a lock operation can
be constructed by an atomic on a lock variable followed by a
fence. Similarly, the unlock operation can be constructed by a
fence followed by an atomic on the lock variable. The scope
of the lock/unlock operation is equal to the narrowest scope
of its constituents.

Let us consider the example of unbalanced tree search
(Figure 5). Here, each threadblock has a local and global
stack where they place child nodes that are generated from a
parent node. Each thread in a threadblock removes nodes from
their local stack to produce child nodes based on a simple
hash function. Since this procedure involves multiple steps that
must be executed atomically (lines 6-8), the stack is locked
using block scope (lines 3-5, 9-10) while nodes are removed.
In case the local stack is empty, threads can attempt to remove
nodes from the global stack of any threadblock. Since these
are shared, device-scope locking must be used (lines 12-14,
18-19). A scoped-race would occur if these atomic operations
or fences used block scope (not shown).
Relation between a barrier and a scoped race: We observe
that races could also arise due to the complete absence of a
fence, e.g., if the fence is missing in Figure 4, line 6. While a
block-scoped fence is sufficient in this case, a barrier could have
also prevented the race, since barriers also act as block-scope
fences (Section II). However, barriers additionally synchronize
progress of all threads in the block and, thus, are slower.

TABLE I: Description of microbenchmarks.

Sync.
type

Racey
tests

Non-
racey
tests

Description

Fence 2 4
A write to global memory followed by a read by
another thread, with or without a threadfence
in between, of varying scopes.

Atomics 4 5 Atomic and non-atomic operations on global
memory using varying scopes.

Lock /
unlock 12 5

Loads/stores on global memory with or without
lock/unlock (acquire/release) of varying scopes.
Required threadfence may also be missing.

Total 18 14

TABLE II: Applications in the benchmark suite.

Benchmark Description Parameters Races

Matrix Mul-
tiplication

(MM)

Computes product of two large
matrices. Uses scoped lock/unlock.
Please refer to Figure 5 for details.

800 x 500
and 500 x

30
matrices

Scoped-
lock.

Reduction
(RED)

Computes reduction (sum) of a
large array [26]. Uses differently
scoped fences. Refer to Figure 4.

25.6M
elements

Scoped-
atomics and

fences.

Rule 110
Cellular

Automata
(R110)

Computes Rule 110 of Cellular
Automata over an array. Each thread
updates an array location each itera-
tion. Scope of fence used after iter-
ation depends whether the element
lies on the border of a block or not.

2.5M
elements

Scoped-
atomics and

fences.

Graph
Coloring
(GCOL)

Assigns color to each graph vertex.
Vertices and edges are distributed
among blocks for processing [27].
Uses work stealing with scoped-
atomics as seen in Figure 3.

30K
vertices,

50K edges

Scoped-
atomics.

Graph Con-
nectivity
(GCON)

Finds connected components of a
graph. Vertices and edges are dis-
tributed among blocks for process-
ing [28]. Uses work stealing with
scoped-atomics as seen in Figure 3.

100K
vertices,
150K
edges

Scoped-
atomics.

One-
Dimensional
Convolution

(1DC)

Computes the convolution of a large
array. Each thread does a single
computation for an element, and up-
dates memory using scoped atomics
based on whether other blocks are
updating the same location.

9 element
filter, 1M
elements

Scoped-
atomics.

Unbalanced
Tree Search

(UTS)

Trees are constructed, using a sim-
ple hash function to decide the
number of children a node has
[29]. Each block has a local and
global stack to keep pending nodes.
Threads operate on nodes from their
local stack with block scope or from
any global stack with device scope.

120 trees,
9 levels,
3 avg.

children
(∼1.2M
nodes)

Scoped-
atomics and

lock.

B. The ScoR benchmark suite

Scoped operations are a relatively new synchronization
concept. Unsurprisingly, any substantial number of open-source
applications that use scoped-synchronization is yet to exist.
At best, there has been a suite of microbenchmarks [30].
However, with the continued support of scoped operations
in CUDA and OpenCL and slower global synchronization due
to bigger GPUs, the use of scoped operations is likely to in-
crease [4]. Many emerging GPU-accelerated applications, such
as graph processing, demonstrate irregular interactions among
threads that do not lend themselves well to a traditional bulk-
synchronous execution [4]. The use of scoped-synchronization
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Fig. 6: ScoRD design diagram.

is essential for such applications to achieve both correctness
and good performance.

We thus created a benchmark suite with seven applications
and thirty-two microbenchmarks that use a variety of scoped
synchronization operations, as discussed above. We call it the
ScoR (Scoped Race) benchmark suite.

Table I and Table II describe the microbenchmarks and the
applications, respectively. The microbenchmarks use only two
threads to create both racey and non-racey conditions. These
are useful for unit testing different race conditions and the
accuracy of race detectors. Non-racey versions are useful to
check for false positives. The applications are chosen to cover
a wide variety of scoped-synchronization operations and, thus,
potential scoped races. By default, each application is correctly
synchronized but comes with configurable parameters that can
introduce different types of scoped and non-scoped races.

IV. SCORD: A GPU SCOPED RACE DETECTOR

We design ScoRD‡ – an accurate and efficient hardware-
based GPU race detector. ScoRD detects scoped races and
races in global memory due to missing synchronization
operations.

ScoRD reports the instruction pointer and the data address
of the memory instruction associated with the resultant race,
either due to insufficient scope, or due to the absence of
synchronization. It further reports whether the conflicting
accesses were from the same threadblock (block-scope race)
or different threadblocks (device-scope race), and the type
of race, e.g., was it a race due to a missing fence/barrier or
due to insufficient scope in the lock/unlock? This provides the
programmer with enough context to identify bugs. ScoRD does
not stop executing on detecting the first race. Instead, it attempts
to complete the execution while accumulating information on
detected races in a memory buffer. The user, therefore, gets
information on multiple bugs in a single execution of a program.

‡Available at: https://github.com/csl-iisc/ScoRD/

At a high level, on a memory access (load/store or atomic),
ScoRD first performs preliminary checks to find out if the
access is trivially race-free. This captures simple yet common
circumstances where races cannot exist (e.g., accesses to a
location in program order) and acts as a filter to a more
involved race detection. If the preliminary check fails, two
types of checks are deployed to detect races. Happens-before
relations [22] are checked to detect races due to insufficient
scopes in atomics and fences or due to the absence of
synchronizations. Further, ScoRD infers lock/unlock operations
by monitoring atomics and fence pairs and uses the lockset-
based algorithm [8], [10], extended to incorporate the notion
of scopes, to detect races due to locking.

While lockset-based detection is restricted to detecting errors
only in locking, happens-before-based detection applies to
a broader range of synchronization operations. However, a
race needs to manifest during execution for happens-before-
based detection to detect it. In contrast, lockset-based detection
can detect even potential races that may not manifest during
an execution. ScoRD thus utilizes both approaches to catch
different classes of scoped races as suitable.
Hardware modifications and the metadata: It is essential
to first learn about the hardware changes and the required
metadata to appreciate the inner workings of our race detector.
Since in a typical GPU, the smallest scheduling entity is a
warp, we maintain state and metadata at the warp granularity.
Further, in Section VI, we discuss how ScoRD gracefully
extends to designs where this may not always be true.

Figure 6 depicts the hardware modification for ScoRD.
First, each SM is extended to keep track of the ID (an 8-bit
counter) of the latest barrier ( syncthreads) executed by
each threadblock (up to 8 per SM). SMs also keep a four-entry
circular queue called the lock table for each warp (shown in
the top right corner of Figure 6). The lock table is used for
inferring lock (acquire pattern) and unlock (release pattern) and
for tracking actively held locks by a warp. We later describe
how this is used for lockset-based race detection.

ScoRD keeps metadata for each unit of global memory (by
default, for every 4 bytes). The size of each metadata entry is
8-bytes long. Figure 7 shows the content of each entry. It keeps
track of the threadblock ID and warp ID that last accessed the
corresponding memory location. It keeps the latest device and
block-scope memory fence ID executed by the warp that last
wrote to the location. It further tracks the ID of the latest barrier
executed by the threadblock that last accessed the location.
We will shortly describe how these metadata contents are used
to infer if an adequate synchronization operation has been
executed between two conflicting accesses.

An entry in the metadata (Flags) also tracks the state of
a memory location, e.g., if it has been modified, or has been
accessed by different warps within a threadblock (BlkShared)
or by different threadblocks in the kernel (DevShared). The
flags track if a memory location is accessed using block
or device scoped-atomic operations. In addition, the flags
keep track of whether all accesses to the location since (re-)
initialization have been strong operations (i.e., load/stores with

https://github.com/csl-iisc/ScoRD/
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Fig. 7: ScoRD’s in-memory metadata layout for one entry (8-bytes).

a volatile qualifier or atomic operations). These help identify
the existence of conflicting accesses to a memory location.
Last but not least, the Lock Bloom Filter keeps the summary
of the locks held by the warp that last accessed the location.

The metadata corresponding to the entire device (on-board)
memory of a GPU is pre-allocated in a contiguous physical
memory region at boot. The Modified, BlkShared, and
DevShared flags are all initialized to true for each entry.
However, the size of the metadata entry (8 bytes) is double
that of the granularity of tracking (4 bytes). Therefore, a naive
implementation will add a 200% memory overhead for the
metadata. In Section IV-B, we will describe our idea on how
to reduce this overhead to 12.5% without any major impact
on race detection. The Tag field in metadata entries will be
used for this purpose.

Finally, the hardware race detector (right bottom of Figure 6)
hangs off the interconnect that connects SMs to the L2 cache.
It has three primary tasks. First, for each memory access, it
loads the corresponding metadata entry. Next, ScoRD keeps a
hardware fence file shared by all SMs to keep track of the IDs
of the latest block-scope and device-scope fence operations
executed by a given warp (6-bit counters each). The fence file
is indexed by the combination of threadblock and warp ID.
This helps detect if a warp has executed any fence since it last
accessed a memory location (noted in metadata).

The race detector also houses the logic (next subsection) to
detect races by consulting the access information (e.g., ID of
the accessing warp, threadblock), the metadata, and the fence
file. Note that even when a load instruction hits in the L1
cache, a packet is sent to the race detector for ascertaining
the presence (or absence) of a race. The execution, however,
can continue while race detection lags behind until the buffers
between the L1 cache and the race detector overflow. This
helps hide most of the latency due to extra accesses on L1
cache hits (Section V).

A. Operation of ScoRD

We now detail how ScoRD uses the above-mentioned
hardware state and metadata to detect races. We start by
describing preliminary checks, followed by checks performed
for happens-before-based detection and lockset-based detection,
in that order.

There are four types of instructions that are involved in
either updating the hardware state/metadata and/or involved in
detecting races. The fence and barrier operations update only
the hardware state while memory instructions (loads/stores)
and atomic operations update both the hardware state and the
metadata in the memory, as well as activate race detection logic.
When an SM executes a barrier, the BarrierID (counter) of the

TABLE III: Preliminary checks to ascertain if an access cannot
participate in a race. md stands for the metadata entry.

Type Condition

(a) Initialization md.Modified && md.BlkShared &&
md.DevShared

(b) Program order md.WarpID == WarpID
&& md.BlockID == BlockID

&& !md.BlkShared && !md.DevShared
(c) Barrier BlockID == md.BlockID &&

BarrierID != md.BarrierID && !md.DevShared

TABLE IV: Conditions for races. fFile represents corresponding
fence file entry.

Type Condition
(a) Missing block

fence
md.Modified && md.BlockID == BlockID
&& md.BlkFenceID == fFile.BlkFenceID
&& md.DevFenceID == fFile.DevFenceID

(b) Missing device
fence

md.Modified && md.BlockID != BlockID
&& md.DevFenceID == fFile.DevFenceID

(c) Not strong access !md.Strong OR !Strong
(d) Scoped atomic md.IsAtom && md.Scope == BLOCK

&& md.BlockID != BlockID
(e) Missing common

lock on load
md.Modified && intersect locks().empty()

(f) Missing common
lock on store

intersect locks().empty()

issuing warp in the SM is incremented. When a fence operation
executes, the issuing warp ID, the threadblock ID, and its scope
are sent to the race detector. The race detector looks up the
fence file with a combination of warp and threadblock ID
and increments the block or device-scope FenceID based on
the scope of the fence (Figure 6). This way, the fence file is
updated with the latest fence ID executed by a warp.

The execution of a load, a store, or an atomic instruction
triggers access to the metadata and a check for a race. First, the
instruction type (load, store, or atomic), address, instruction’s
warp ID, threadblock ID, barrier ID, fence IDs (block and
device scope), and the bloom filter containing the active locks
(described later) are sent to the race detector. The Metadata
accessor in the race detector (Figure 6) then looks up the
metadata in the memory corresponding to the address of the
access. Once the metadata is available, the Detection logic
(Figure 6) first initiates the preliminary check as detailed next.
Preliminary race check: The objective of the preliminary
check is to quickly ascertain if an access is trivially race-free.
ScoRD checks three conditions for this purpose (Table III). 1©
It checks if the access is the first access after (re-) initialization
of the memory location. This is done by checking if three flags
in the metadata (Modified, BlkShared, DevShared) are all set
(condition (a) in Table III). 2© Next, it checks for program order
across all previous accesses. This is checked by first matching
the WarpID and the BlockID in the metadata with that of the



current access. It also makes sure that both BlkShared, and
DevShared are unset in the metadata (condition (b)). This
guarantees that the same warp performed accesses to the given
memory location. 3© Finally, it checks if the previous accesses
to the memory location were from the same threadblock and
whether a barrier separates the previous and current access
(condition (c)). If any of these three conditions are satisfied,
then no further race check is performed. Otherwise, further
checks are triggered (detailed shortly).

Memory access instructions also update the WarpID,
BlockID, BarrierID, and FenceIDs of the metadata entry
even if no race is detected. Atomic operations set the IsAtom
flag and set Scope flag to block or device scope. A store or
atomic instruction further sets the Modified flag. On a load, the
DevShared flag is set if the BlockID in the metadata differs
from the threadblock ID of the current access. Otherwise, the
BlkShared flag is set if the WarpID in the metadata is different
from the current access.
Detecting races due to fences or atomics: If all the conditions
in the preliminary check fail, ScoRD looks for possible races
due to improper use of fences or atomics as follows (first four
conditions in Table IV). On a load, if the Modified flag in
the metadata is unset, then no further check is required since
loads alone cannot cause conflicting accesses. If the WarpID
in the metadata is different from the warp ID of the current
access, but the BlockID matches the threadblock ID of the
current access, then it indicates the given memory location was
earlier modified by a different warp from the same threadblock.
Therefore, the load could constitute a conflicting access in the
block scope. If the FenceIDs stored in the metadata match the
threadfence IDs (block and device scope) of the last accessing
warp stored in the fence file, then it indicates no fence was
executed since the previous conflicting access. Otherwise, the
FenceID in the fence file would have differed from that in the
metadata. Thus ScoRD declares a block-scope race (condition
(a) in Table IV).

If the threadblock ID of the current access is different from
the BlockID stored in the metadata, then it could be a device-
scope race. ScoRD declares a race if the DevFenceID value
in the fence file matches that in the metadata (condition (b)).

As discussed in Section II-B, fences guarantee ordering
only for strong operations (e.g., load/store with the volatile
qualifier, atomics). Consequently, a race should be declared for
conflicting accesses to a memory location that are not strong
accesses, even if they are separated by a fence. To capture this,
the first access with a volatile qualifier or an atomic after (re-
)initialization sets the Strong bit in the metadata. Any access
that is not strong unsets this bit and triggers a race (condition
(c)). On a store, the race detection logic for both block and
device scope is the same as above, except that the Modified
flag is ignored.

For detecting atomic races, two aspects are considered.
ScoRD first considers if a given memory location was
previously accessed with loads/stores by checking if the isAtom
bit is unset. In this case, the atomic operation is treated as if it
were a store, and the checks proceed as discussed previously.

If a load or store instruction finds that the previous access
to the memory location was via an atomic (i.e., IsAtom flag
set in the metadata), the scope of the operation was block
(stored Scope flag in metadata) and BlockID is different from
the threadblock ID of the current access, then a device-scope
atomic race is declared.

Alternatively, if both the previous access and the current
access to a memory location are atomic, then the detector looks
for a device-scope race. Specifically, if 1© the BlockID in the
metadata is different from the threadblock ID of the current
access, and 2© if the scope information stored in the metadata
is block, then a race is declared. Otherwise, the atomic accesses
are race-free (condition (d) in Table IV).
Detecting races due to lock/unlock: As discussed in Sec-
tion III, a pair of atomic and fence operations are often used
in CUDA programs to implement locking. Specifically, an
atomicCAS operation followed by a fence of appropriate scope
is used for locking, and a fence followed by atomicExch is
used for unlocking [18], [20]. Therefore, ScoRD needs to
infer locks and uses a 4-entry lock table implemented as a
circular buffer for this purpose. Each entry contains a hash of
the address of the variable (6 bits), a bit for scope information,
a valid bit, and an active bit. Whenever a warp executes an
atomicCAS instruction, an entry for it is inserted in the lock
table with the valid bit set, but the active bit unset. Whenever
a fence instruction executes, the SM sets the active bits of
lock table entries with matching or lesser scope. An active
entry indicates that the warp currently holds that lock. On the
execution of atomicExch, the entry with matching hash and
scope has its valid bit unset indicating a release.

On execution of a load/store instruction, a summary of the
active entries in the lock table is sent to the race detector.
Specifically, the hash of the lock table entries and the scope is
inserted into a 16-bit bloom filter, and sent along with the other
information of the instruction as detailed before (e.g., warp ID,
threadblock ID). The race detector then looks up the relevant
metadata. If either the bloom filter content in the metadata or
that of the current access is non-empty, then lockset-based race
detection is triggered. There, on a load, the Modified bit in
the metadata is checked. If set and the intersection (bitwise
AND) of the bloom filter value stored in the metadata and that
of the current access is empty, then a race due to improper
locking is declared (condition (e) in Table IV). Similarly, on a
store, a race is declared if the intersection of the bloom filter
contents is empty (condition (f)).

Note that it is possible that multiple lock addresses hash to
the same value in the bloom filter, thus incorrectly indicating
a common lock. This, in turn, leads to a rare possibility that
ScoRD could miss a true race (false negative). False positives
are also theoretically possible in ScoRD due to the overflow
of counters/IDs. For example, as the BlkFenceID is 6 bits, if
exactly 64 block-scope fences are executed between conflicting
accesses to a memory location, a false race will be declared due
to overflow. However, such cases are practically non-existent.
Increasing counter sizes would reduce the chance of false races,
but would increase hardware overhead.



B. Optimization: Software cache for metadata

One of the drawbacks of the above design is the 200%
memory overhead for the metadata. One option to reduce this
overhead is to increase the granularity of tracking. For example,
instead of tracking races at 4-bytes granularity, one can track
them at 16-bytes granularity. That will reduce the overhead to
50%. However, this introduces a significant number of false
positives due to the sharing of metadata.

Towards this, we observe that racey accesses to a memory
location typically happen close together in time. Further, a
majority of the memory locations accessed by a program do
not participate in races. Even if the metadata for those locations
is absent, it will not impact race detection. ScoRD, therefore,
keeps metadata for recently accessed memory locations in a
software cache, instead of tracking it for every memory location.
Specifically, ScoRD keeps a direct-mapped software cache
of metadata entries. For example, in the default configuration,
ScoRD keeps one metadata entry for every 16th 4-byte segment
of memory. Each entry is augmented with a 4-bit tag to uniquely
identify metadata, given an address.

The metadata is looked up by indexing into the metadata
region with the physical address of the memory access. Note
that a contiguous physical memory region is set aside for the
metadata at boot, and thus, the offset into the region is easily
calculated by dividing the address of the memory access with
the size of the metadata region. When the Metadata accessor
inside the race detector looks up the metadata entry, it also
checks the tag. On a mismatch, that metadata is not used
for race detection and, thus, a race can potentially be missed
(false negative). ScoRD overwrites the metadata entry with
the information of the latest access.

In the Evaluation, we will show that this optimization very
rarely introduces false negatives (less than 3% of cases). The
reason is that the mere aliasing of metadata entries does not
trigger a false negative. To trigger a false negative, the same
metadata entry should correspond to at least two memory
(data) locations that are accessed concurrently, and at least
one of those memory locations should be part of a race. This
is not a common occurrence given that only a small fraction
of an application’s memory potentially participates in a race.
Further, since metadata is allocated in memory, it is possible
to configure ScoRD during boot to not leverage metadata
caching, if memory overhead is not a concern.

C. Overheads due to hardware state and metadata

The BarrierID per threadblock needs 64 bits for each SM.
A lock table is 36 bits (9×4) long, and there are 32 of them
per SM, one per warp. These add to 152 bytes per SM.

Each entry in the memory fence file is 12 bits long (two
6-bit counters, one each for block scope and device scope).
There is one entry for each warp in each SM, and thus, the state
overhead is 720 bytes. In total, the hardware state overhead
adds up to about 2.9KB. Finally, in the default configuration,
the metadata overhead is 12.5% of device memory size.

TABLE V: Default hardware configurations.

Number of
SMs 15 Threads /

warp 32

Max. threads
/ block 1024 Registers /

SM 32768

Threadblocks
/ SM 8 Max. warps

/ SM 32

Private L1
cache

16 KB, 4-way, 128B
blocks, global

write-evict, local
write-back

Shared L2
cache

1.5 MB, 8-way,
128B blocks,

write-back

GDDR5
timing

tRRD = 6, tRCD =
12, tRAS = 28, tRP =

12, tRC = 40, tCL = 12

Memory
channels 12

V. EVALUATION

ScoRD is simulated using GPGPU-Sim [31]. The hardware
parameters in the default configuration are listed in Table V.
The benchmarks and microbenchmarks were compiled using
CUDA 8.0 and use PTX 5.0. Further details of benchmarks are
given in Table II. Matrix Multiplication, Rule 110, Reduction,
and 1D Convolution use randomly generated input. Graph
Connectivity and Graph Coloring uses input generated through
GTgraph [32] The tool generates realistic graphs using the
R-MAT algorithm [33].

A. Results

We evaluate ScoRD against following key questions. 1©
Is ScoRD able to detect races in the applications and
microbenchmarks? 2© What are the performance implications
of ScoRD? 3© What is ScoRD’s impact on the number of
DRAM accesses and what is the efficacy of software caching of
metadata? 4©What are the key sources of overhead of ScoRD?
5© Finally, how sensitive is ScoRD to L2 cache size?

Table VI shows the number of unique races in each
application and how many of those were reported by ScoRD. In
total, we find that out of 44 races, the base design (Section IV),
which does not employ software caching of metadata, correctly
captures all races. ScoRD with caching of metadata catches all
but one (i.e., one false negative) that it misses due to aliasing
in the direct-mapped cache of the metadata. In short, ScoRD
is very accurate in reporting a large number of different races.

Figure 8 shows the execution cycles normalized to no race
detection. There are two bars for each application. The second
one represents ScoRD, while the first one is the base design
without software caching of metadata.

TABLE VI: Number of races caught by different configurations.

Workload Races present Base design w/o
metadata caching ScoRD

MM 4 4 4
RED 2 2 2
R110 2 2 1

GCOL 6 6 6
GCON 5 5 5
1DC 1 1 1
UTS 6 6 6

Microbenchmarks 18 18 18
Total 44 44 43



Fig. 8: Performance of ScoRD. Execution cycles normalized
to no-race detection.

We find that the performance overhead of ScoRD across
seven applications is only about 35%. This is significantly
smaller than most existing GPU race detectors. The appli-
cation 1DC, however, suffers more significant performance
degradation (about 88%). We find that 1DC generates many
network packets due to frequent atomic operations. Even
small perturbation in network congestion due to additional
metadata transfer for ScoRD impacts the performance of
the application in a non-negligible way. In contrast, graph
algorithms demonstrate irregular memory access patterns and,
consequently, are memory-bound. The overheads of metadata
accesses and race detection thus show less relative impact on
application performance.

We further observe that software caching of metadata in
ScoRD also helps its performance. Since software caching
keeps only 1/16th of the metadata entries, the number of unique
DRAM accesses to metadata reduces substantially, and this
aids the performance of ScoRD.

Figure 9 shows the number of DRAM accesses (L2 cache
misses) normalized to no race detection (lower is better).
Each application has two stacked bars. As before, the first
one is without metadata caching, and the second one is
ScoRD. The total height of the bars is normalized to the
number of DRAM accesses under no-race detection. Each
bar also shows what fraction of DRAM accesses are due to
metadata and non-metadata access. Non-metadata accesses
include normal data accesses and writebacks that occur in the
course of the program’s execution. We observe that due to
metadata accesses, the total number of accesses may increase
substantially. Metadata entries also contend with normal data
for L2 capacity, thus increasing the normal data accesses as well.
However, with metadata caching, on average, we access only
1/16th of unique metadata entries. This reduces both DRAM
accesses due to metadata and also the contention in the L2
cache. This is the key reason behind the improvement of
performance with the optimization that maintains a software
cache of metadata.

The key motivation behind the software caching of metadata
is to reduce metadata overhead (from 200% to 12.5%). Previous
work has proposed increasing the granularity of tracking
to reduce metadata overhead [14]. However, this approach
introduces false positives since races could be declared due
to the sharing of metadata entries. Table VII shows the

Fig. 9: Normalized number of accesses to DRAM.

Fig. 10: Performance overhead breakdowns.

number of false positives as the granularity of metadata
is increased from 4 bytes (Base detector without metadata
caching) to 8 and 16 bytes. We observe that false positives
increase substantially with increasing granularity, especially for
graph algorithms. ScoRD, instead, takes an entirely different
approach to reducing metadata overhead by leveraging temporal
locality in races. This way, ScoRD does not introduce false
positives, while still decreasing memory overheads to just
12.5%.

We further break down the sources of overhead introduced
by ScoRD. There are three primary sources of the overhead
as follows. 1©Stalling the execution on L1 cache hits while
waiting for the race detector (LHD), 2© congestion in the
on-chip network due additional information (e.g., WarpID,
BlockID) sent on the packets (NOC), and 3© accesses, and
writebacks to the metadata (MD). In three sets of separate
experiments, we turned off timing simulations for each of these
and measured performance uplifts to estimate their relative
contribution to total overhead.

Figure 10 illustrates how the different sources of overhead
impact the performance of each benchmark. On average, we
find that relative contributions are 16.5%, 36.2%, and 47.3%
for LHD, NOC, and MD, respectively. In general, applications
with well-coalesced accesses (e.g., RED, R110) generate
fewer packets on the network and thus, experienced negligible

TABLE VII: False positives with varying metadata granularity.

Tracking granularity 4-byte 8-byte 16-byte ScoRD
Metadata overhead 200% 100% 50% 12.5%

MM 0 1 3 0
RED 0 1 1 0
R110 0 2 2 0

GCOL 0 27 29 0
GCON 0 28 28 0
1DC 0 1 2 0
UTS 0 12 23 0



Fig. 11: Sensitivity to memory resources.

impact from on-chip congestion. Most of its overhead is due
to metadata accesses. In contrast, graph applications generate
many packets and congest the network as their irregular memory
access pattern leaves little opportunity for coalescing, causing
a much higher impact from on-chip congestion. We note that
UTS experienced no impact of LHD. This application accesses
its data structures in the global memory, e.g., shared stacks,
exclusively using volatile operations. Since volatile operations
bypass the L1 cache, no L1 hits are encountered even when
the detection is turned off.

B. Sensitivity study

Figure 11 shows ScoRD’s performance sensitivity to L2
cache size and memory bandwidth. There are three bars for
each application. The middle bar in the cluster represents the
default configuration (Table V). The left-most bar represents a
lower L2 capacity and DRAM bandwidth, and the rightmost
bar represents more L2 capacity and bandwidth than the
default. The heights of each bar are normalized to the number
of execution cycles under no race detection for a given
configuration.

The overhead of ScoRD increases with a more constrained
memory subsystem (except for 1DC). This is expected; a
smaller L2 cache size and/or less memory bandwidth increases
contention among the accesses to metadata and that to the
normal data. However, for 1DC, less resources degraded the
execution under no-race detection relatively more than when
ScoRD was in execution. Thus, we observe slightly less relative
slowdown with lower memory resources.

VI. DISCUSSIONS

Detecting races in presence of Independent Thread
Scheduling (ITS): The SIMT execution at warp granularity
is fundamental to GPU’s performance advantage in executing
massively data-parallel code. However, with the Volta archi-
tecture onward, NVIDIA introduced ITS [34]. In ITS, when
a warp experiences branch divergence, instructions from both
paths are executed alternately by their respective threads. This
may lead to a new type of race if different threads within a
warp access common data during divergent execution.

While ScoRD does not support ITS yet, it can detect this
new type of race with minor modifications. First, the BarrierIDs
for warps are split into a 7-bit BarrierID, and a hasDiverged
bit that tracks whether a warp has diverged. ScoRD would then
extend the WarpID in the metadata with 5 extra bits (currently

TABLE VIII: Comparison of support by GPU race detectors.

Detector Fences Locks Scoped
fences

Scoped
atomics

Low perf.
overhead

(<3X)
LDetector X
HaccRG X X X
Barracuda X X X
CURD X X X
ScoRD X X X X X

unused) to store the ThreadID of accessors. The detection
logic then changes minimally to consider the ThreadID if
hasDiverged is set. Otherwise, it uses the WarpID as usual.
Support for acquire/release: With the release of PTX 6.0, two
new scoped synchronization operations – acquire and release –
have been added in NVIDIA GPUs [21].

While ScoRD does not support explicit acquire and release
instructions, it supports acquire and release patterns in the case
of lockset detection of critical sections. Extending it to support
explicit acquire and release instructions is not difficult.

A global counter is maintained in the race detector, incre-
mented for every release operation. Similar to the fence file,
a release file is introduced, which keeps the global release
counter value of the last release by a warp. Stores update the
value of the release counter in the metadata of accessed data. A
bit is used to track if the data was used in a release operation.
During acquire, this bit is checked for a previous release, in
which case the details of block ID and warp ID are sent to the
acquiring warp. SMs store the details of synchronized warps.
Race detection would then follow a similar procedure to fence
race detection, using the release file instead.

VII. RELATED WORK

GPUs traditionally used cache flushes and invalidations to
implement global synchronization. However, this becomes
prohibitively expensive for large workloads. Besides, often
global synchronizations are unnecessary. Newer GPUs, thus,
support scoped synchronization that provides synchronization
at levels imitating the GPU’s execution hierarchy.

The traditional sequential consistency for data-race-free
memory model [35] falls short for scopes. Researchers have
thus proposed heterogeneous-race-free models that take scopes
into consideration [3], [5]. Remote-scope promotion [4], [36]
proposes to enable the dynamic promotion of synchronization
scopes if the scope encompassing the producer and the con-
sumer of a data item is not known statically. Researchers have
also proposed an alternative that does not require scopes [37],
which instead uses the DeNovo [38] coherence protocol.
However, current commercial GPUs support scopes [23], [39].

Several prior works have explored race detection in GPUs
on a limited scale. Boyer et al. [40] proposed race detection
by running GPU kernels on emulators, but this incurs heavy
slowdowns. GRace [16] and GMRace [13] propose race
detectors that use static analysis and dynamic checking. Besides
these, NVIDIA released Racecheck [15], a runtime tool to
detect races. However, these detectors restrict themselves to
shared memory and ignore the more challenging task of global
memory race detection.



LDetector [41] detects races by taking snapshots and
comparing changes in values. However, races caused by stores
that do not change the values stored are not detected. It also
ignores fences and atomics. SMT solving [42]–[45] has also
been proposed to find races, but significant false positives may
occur. Furthermore, none of these consider scoped races.

HAccRG [14] uses hardware support to detect races in global
memory and bears similarities to our design. However, they
too ignore scoped races. Besides, HAccRG incurs a memory
overhead of 150%, which makes their solution less practical.

Barracuda [12] uses binary instrumentation to detect races
in GPU programs. CURD [11] builds on this, optimizing the
common case where synchronization occurs through barriers
while relying on Barracuda for atomics and fences. While
scoped fences are supported in Barracuda, it ignores scoped
atomics. Further, being implemented purely in software, they
observe slowdowns as high as 1000x for Barracuda, and 25x
for CURD. Table VIII summarizes the differences between
ScoRD and a few closely related detectors. As depicted, none
of the previous race detectors support the detection of all types
of scoped races while achieving low-performance overheads.

CPU race detection has been extensively explored. While
many race detectors have been proposed [8]–[10], [46]–[54],
these cannot be directly applied to GPU owing to its very
different architecture and programming. Importantly, CPUs
lack scoped synchronization.

VIII. CONCLUSION

As more GPU applications use scoped synchronization, it
becomes important to detect potential scoped races. To the
best of our knowledge, ScoRD is the first hardware-based race
detector that can detect scoped races in GPUs. In addition, we
have created seven applications and 32 microbenchmarks that
utilize scoped synchronization to aid further research in this
domain. ScoRD can detect a large range of races, with a 35%
performance overhead, and a 12.5% memory overhead.
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