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Abstract
Each request in LLM inference goes through two phases:
compute-bound prefill and memory-bandwidth-bound de-
code. To improve GPU utilization, recent systems use hybrid
batching that combines the prefill and decode phases of dif-
ferent requests into the same batch. This approach optimizes
linear operations but remains inefficient for attention compu-
tation because existing attention kernels specialize execution
independently for the prefill and decode phases.
In this paper, we present POD-Attention — the first

GPU kernel that efficiently computes attention for hybrid
batches. POD-Attention aims to maximize the utilization
of both compute and memory bandwidth by carefully al-
locating the GPU’s resources such that prefill and decode
operations happen concurrently on the same multiprocessor.
POD-Attention speeds up attention computation by up
to 59% (mean 28%), enabling higher throughput and lower
latency LLM inference compared to the use of independently
optimized prefill and decode attention kernels.

CCS Concepts: • Computing methodologies→ Machine
learning; • Computer systems organization→ Parallel
architectures.

Keywords: Large language models; GPUs; self-attention
ACM Reference Format:
Aditya K Kamath, Ramya Prabhu, Jayashree Mohan, Simon Peter,
Ramachandran Ramjee, and Ashish Panwar. 2025. POD-Attention:
Unlocking Full Prefill-Decode Overlap for Faster LLM Inference. In
Proceedings of the 30th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS ’25), March 30-April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3676641.3715996

∗Work done as an intern at Microsoft Research India.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/2025/03
https://doi.org/10.1145/3676641.3715996

1K 2K 4K 8K 16K
Context Length

0

20

40

60

80

100

U
ti

liz
at

io
n 

(%
)

Prefill Attention (Batch size = 1)

Compute Utilization
Mem BW Utilization

16 32 64 128 256
Batch Size

0

20

40

60

80

100

U
ti

liz
at

io
n 

(%
)

Decode Attention (Context length = 4K)

Compute Utilization
Mem BW Utilization

C0 C1 C2
Hybrid Batch Config

0

20

40

60

80

100
U

ti
liz

at
io

n 
(%

)
POD-Attention

Compute Utilization
Mem BW Utilization

C0 C1 C2
Hybrid Batch Config

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 R
un

ti
m

e

FA_Prefill
FA_Decode

FI_Prefill
FI_Decode

POD

Figure 1. State-of-the-art attention kernels utilize either
compute or memory (FA: FlashAttention, FI: FlashInfer).
POD-Attention utilizes both compute and memory to ac-
celerate attention computation in hybrid batches (see Table 1
for configurations. Model: Llama-3-8B on 2 A100 GPUs).

1 Introduction
The infrastructure for serving large language models (LLMs)
is expanding to meet their growing demands [3, 16]. Large-
scale service providers often depend on expensive high-end
GPUs tomeet peak demand or latency targets [46]. Therefore,
optimizing LLM serving systems has become crucial [21, 23,
41, 57, 62, 65, 66]. The overall efficiency of a deployment
depends on how well GPU resources are utilized.
From a resource utilization perspective, LLM inference

is a challenging workload because different phases require
different resources at different times [22–24, 66]. The process-
ing of an LLM request begins with a highly parallel (hence,
compute-bound) prefill phase which is then followed by a
memory-bound decode phase [24]. Serving LLMs efficiently,
therefore, requires both high compute and high memory
bandwidth. An ideal system would strive to maximize the
utilization of both compute and memory. However, doing
so is non-trivial because for a given request, the prefill and
decode phases occur at different times.
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State-of-the-art LLM serving systems deal with this chal-
lenge by combining the inputs of prefill and decode phases
of different requests into the same batch [24, 33, 62] — a tech-
nique we refer to as hybrid batching. Hybrid batching avoids
the need to fetch model weights from GPU high-bandwidth
memory (HBM) separately for prefill and decode tokens. In-
stead, it allows the GPU to fetch model weights once and
use them to compute over both prefill and decode inputs.
Hybrid batching also helps reduce tail latency: to limit the
runtime of each iteration, the scheduler can divide long input
prompts (prefill inputs) into multiple smaller chunks, then
combine ongoing decodes with a new prefill chunk every
iteration [23, 33]. As such, use of hybrid batching is common
in various LLM serving systems today [23, 33, 41, 62, 66].
While prior work has focused on optimizing the linear

operations [23, 33, 62], they do not optimize the attention
computation of a hybrid batch. This is reasonable for a sys-
tem that primarily deals with small context lengths since
linear operations dominate run time in this setting [62, 66]. In
contrast, as the context length increases, attention computa-
tion becomes the primary performance bottleneck (Figure 4).
Some recent works have also tried to optimize attention

computation [30, 31, 34, 48], but current solutions address
prefill and decode operations separately — maximizing com-
pute utilization for prefills and bandwidth utilization for
decodes, as shown in Figure 1. In this paper, we show that
such an approach is suboptimal as it leaves critical GPU re-
sources underutilized in different parts of computation. For
example, Figure 1 illustrates that memory bandwidth utiliza-
tion of the prefill attention kernel is often below 5%, while
compute utilization of the decode attention kernel is under
10%. The effect of using independently optimized kernels is
particularly noticeable with hybrid batching because prefill
and decode kernels execute immediately one after the other,
leading to periods of high demand of a resource immediately
followed by low utilization of the same resource.

To improve the efficiency of hybrid batching, we present
POD-Attention — the first GPU kernel, to the best of our
knowledge, that efficiently batches the computation of prefill
and decode attention. In doing so, we first show (§3) that
existing techniques do not provide adequate performance
in fusing attention computation due to various limitations
such as straggler threads, synchronization barriers and lack
of guaranteed SM-level co-location of different Cooperative
Thread Arrays (CTAs) on GPU Streaming Multiprocessors
(SMs). POD-Attention addresses these issues by fusing
the computation in a CTA-parallel manner, introducing SM-
aware software-based CTA scheduling within the GPU (§4).
Building on state-of-the-art FlashAttention kernels [1], POD-
Attention significantly accelerates attention computation
by utilizing both compute and memory resources as per the
requirement of a given batch of requests (see Figure 1).

Config. Prefill Decode Resource
BS CS CL BS CL requirement

C0 1 1K 12K 80 12K memory-bound
C1 1 12K 12K 220 12K balanced
C2 1 16K 16K 250 12K compute-bound

Table 1. Details of hybrid batches evaluated in Figure 1 (BS:
batch size, CS: chunk size, CL: context length).

We also integrate POD-Attention in a state-of-the-art
LLM inference scheduler Sarathi-Serve [23]. Our experi-
ments show that POD-Attention computes attention up to
59% faster (mean 28%) than the prefill and decode attention
kernels of FlashAttention and FlashInfer. In terms of the
end-to-end LLM inference performance, POD-Attention
improves throughput by up to 22% while also reducing cru-
cial latency metrics such as time-to-first-token (TTFT), time-
between-tokens (TBT) and the end-to-end request execution
latency over Sarathi-Serve.
Contributions: We make the following contributions:
• We highlight that independently optimizing prefill and
decode attention kernels is suboptimal for hybrid batching
based LLM inference.

• We present POD-Attention — a GPU kernel that com-
putes prefill and decode attention concurrently to utilize
both compute and memory bandwidth simultaneously.

• We integrate POD-Attention in Sarathi-Serve and show
that it enables high throughput and low latency LLM in-
ference compared to the use of independently optimized
prefill and decode attention kernels.

2 Background and Motivation
We first discuss why LLM serving systems use hybrid batch-
ing and then motivate the need to optimize attention com-
putation. Finally, we provide an overview of GPU execution.

2.1 Large Language Model (LLM) Inference
LLMs process user inputs and outputs as tokens, internally
represented as vectors. Each request during inference goes
through two phases — prefill and decode [62]. The prefill
phase processes the tokens of a user’s prompt in parallel
and produces the first output token, whose latency is called
time-to-first-token (TTFT). Subsequently, the decode phase
generates one output token (per-request) per-iteration auto-
regressively. The latency taken to generate each output token
is called time-between-tokens (TBT). The prefill phase is
highly parallel and compute bound while the decode phase
is memory bound. Due to the parallel processing of a large
number of tokens, the latency of a prefill iteration is generally
higher than that of a decode iteration.
The distinct computational characteristics of prefill and

decode operations create a throughput-latency tradeoff in
LLM inference [23, 35, 46, 65], as illustrated in Figure 2. Since
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Figure 2. Impact of scheduling strategies on TTFT and TBT.

decoding is memory bound, using a large batch size improves
throughput. The original vLLM scheduler [41] uses prefill-
prioritizing scheduling to maximize the decode batch size
(Figure 2(a)). This approach provides low TTFT, but at the
cost of high TBT because a new request’s prefill can pause
ongoing decodes, causing generation stalls [23]. High TBT
is especially problematic in long-context scenarios, where
each generation stall can last several seconds.
The issue of high TBT has been acknowledged in real-

world deployments [14]. Sarathi-Serve [23] proposed chunked-
prefills coupled with continuous hybrid batching [62] — a
technique that divides the prefill tokens of a request into
multiple smaller chunks and schedules one prefill chunk
per-iteration with on-going decodes (Figure 2(b)). This way,
Sarathi-Serve enables increasing batch size while avoiding
generation stalls, improving both performance and user in-
teractivity. Various LLM serving systems have incorporated
this technique [2, 64, 66], including vLLM [18].
In the common case with hybrid batching, an executing

batch consists of one prefill chunk of a pre-determined size
and multiple decodes (as shown in Table 1). For example,
consider a workload where each request consists of 2K pre-
fill tokens and generates 200 output (decode) tokens. If the
prefill chunk size is 1K, a request’s prefill completes over two
iterations (prefill tokens / chunk size). Upon completion of
the prefill phase, it must execute for another 200 iterations —
each iteration corresponding to one output token. In these
200 iterations, 100 requests can complete their prefill phase
to join the running batch. This leads to an effective batch
size of 101 in the steady state wherein 100 requests execute
in their decode phase alongside one prefill chunk of a new
request. Executing these hybrid batches requires both high
compute (for the prefill chunk) and high memory bandwidth
(for the decode requests).

Figure 3 shows how hybrid batching works in practice.
Except attention, all other operations are linear i.e., com-
puted element-wise. Linear operations obey the rule f(x +
y) = f(x) + f(y) so inputs for a linear operation can be com-
bined, computed upon by the same model weights to reduce
memory accesses, and then separated. In contrast, attention
is a sequence-level operator that is computed between three

Figure 3. Computation in hybrid batches. Current systems
compute prefill inputs (𝑒1...𝑒𝑝 ) and decode inputs (𝑒𝑝+1...𝑒𝑝+𝑑 )
together for linear operations. However, they compute prefill
and decode attention separately using specialized kernels.
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Figure 4. Contribution of different operations in iteration
runtime with hybrid batching (model: Llama-3-8B, batch size:
60, chunk size: 1K). For each context length, we show runtime
of iteration that processes the last chunk of a prompt.

representations Q (query, of the current tokens being pro-
cessed), and K/V (key/value, of all tokens in the sequence
seen so far) as:

Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇

𝑠𝑐𝑎𝑙𝑒

)
𝑉

The QKV representations are further divided amongmulti-
ple query heads and K/V heads, each assigned to a group [25].
Attention is computed in parallel for each Q head and K/V
head pair. Since resource requirements of prefill and de-
code attention are different, state-of-the-art libraries such
as FlashAttention (FA) [29, 30, 49] and FlashInfer (FI) [60]
provide specialized kernel APIs, optimized separately for
each phase. Use of these kernels works well in small con-
text length scenarios where attention computation is a small
fraction of the total inference time [24, 62].

However, the context length in many real-world LLM ap-
plications continues to grow [21, 57]. In such scenarios, atten-
tion computation dominates, becoming more than 60% of the
total inference time in many cases as shown in Figure 4 (con-
text length 16K). Note that prefill and decode attention are
computed immediately one after the other in hybrid batches
(see Figure 3). Therefore, when independently optimized at-
tention kernels are used, GPU execution goes through periods
of high demand of a resource followed by low utilization of
the same resource. For example, the prefill kernel requires
high compute but compute is (mostly) idle when the decode
kernel executes.
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We posit that concurrently computing prefill and decode
attention can improve performance as it would utilize both
compute and memory simultaneously. However, current
techniques have several limitations with attention computa-
tion. To delve deeper into this, we first explain how GPUs
operate and then present a case study of existing methods for
executing different operations concurrently on GPUs (§3).

2.2 GPU Execution Model
The GPU’s hardware is arranged in a hierarchy that supports
execution at a scale of hundreds of thousands of parallel
threads, depicted in Figure 5 [5]. The main processor unit of
a GPU is a Streaming Multiprocessor (SM), with modern GPUs
containing around a hundred SMs. Each SM has an L1 cache
and shared memory along with tensor cores for accelerated
general matrix multiplication (GEMM) and execution units
for integer/floating point operations. The shared memory
is a user-addressable partition of the L1 cache. The GPU
memory is accessed by SMs through the shared L2 cache.

GPU programming languages expose a hierarchy of threads
that mimic the hardware hierarchy. The smallest unit of ex-
ecution is a thread, while a group of 32 threads make up
a warp, which typically execute concurrently in lockstep.
To maximize throughput, GPU programmers ensure that
threads within a warp execute the same code path. A Co-
operative Thread Array (CTA) [12] is a group of warps that
share the L1 cache and shared memory. All warps in a CTA
are guaranteed to execute within a single SM.
Users launch GPU kernels, or GPU-executed functions,

specifying the number of threads in the CTA, the number of
CTAs in the kernel, as well as the required shared memory
per CTA. This launch is then queued in a stream; operations
within a stream are serialized but different streams can exe-
cute in parallel in any order. The CTA scheduler selects CTAs
from streams and assigns them to SMs when sufficient exe-
cution resources (e.g., threads, shared memory and registers)
are available within the SM.

Central to the GPU’s massive throughput is the fast, cycle-
level warp scheduler baked into the hardware. Every clock
cycle, the warp scheduler dispatches eligible warps for ex-
ecution; a warp is eligible if its threads aren’t stalled (e.g.,
waiting for memory access). This allows each SM to context

Execution method GC WQ Notes

Streams [45] × ✓ Easiest to implement
CTA × ✓ Easy load balancing
Warp (e.g., HFuse [42]) ✓ × Suffers from straggler problem
Intra-thread [53, 59] ✓ × Cannot overlap with CTA barriers
SM-aware CTA (Ours) ✓ ✓ Minimizes operation interference

Table 2. Methods of concurrently executing or fusing dif-
ferent operations along different levels of the GPU execu-
tion hierarchy (GC=guarantees op co-location, WQ=reduces
wave quantization).

Config. Description
FA_Serial Serial execution with FA kernels
FA_Streams Parallel execution via streams with FA kernels
FA_HFuse Horizontally fused FA kernels with HFuse [42]
POD (Ours) Optimized fused computation with our kernel

Table 3. Different methods of computing attention in hybrid
batches (FA: FlashAttention).

switch at every clock cycle if required, effectively utilizing
all its execution resources.

3 A Case Study on Concurrent Execution
The simplest way to compute prefill and decode attention
together is to pass both inputs to an existing attention kernel.
Some LLM serving systems prefer this method for computing
attention in hybrid batches [7, 17]. In §5.1, we show that this
is counter-productive and slower than serial execution.

In this section, we focus on GPU methods for concurrent
execution e.g., running kernels in parallel or fusing their op-
erations into a single kernel. We quantitatively analyze their
performance and highlight key limitations that motivated
us to develop a specialized attention kernel.

3.1 Methods of Concurrent Execution
Each level of the execution hierarchy in a GPU offers poten-
tial for concurrent execution (see Table 2).
1. Kernel-parallel. Streams can potentially execute differ-

ent GPU kernels concurrently. This approach is easy to
implement as it only requires submitting existing kernels
to different streams; all other approaches require fusing
different operations into a single kernel. Unfortunately,
streams alone guarantees neither concurrency nor SM-
level co-location of different operations [45, 63].

2. CTA-parallel. In this scheme, the CTAs in the kernel are
split across operations in a predetermined manner. CTA-
parallel enables better load-balancing: when one CTA
finishes execution, the GPU scheduler can deploy the next
CTA to the SM. However, similar to streams, CTA-parallel
does not guarantee SM-level co-location.

3. Warp-parallel. Here, warps within each CTA are split
across operations, as proposed in horizontal fusion (HFuse
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Figure 6. Per layer attention runtime of 32 hybrid batches
corresponding to chunked prefills of a request of 16K tokens
(chunk size: 512, model: Yi-6B, d_bs: decode batch size).

[42]). This apprach guarantees co-location since all warps
in a CTA are guaranteed to reside within the same SM.
Unfortunately, warp-parallel fusion suffers from the strag-
gler problem: an entire CTA must complete execution
before it can be replaced by another one; if one or more
of its threads or warps lag behind others, the next CTA
is delayed. While fusing the prefill and decode attention
computation, the fused kernel requires extensive tuning
to deal with a large input space of varying batch sizes and
context lengths e.g., some hybrid batches may be prefill
heavy and others may be decode heavy. Therefore, a fused
prefill-decode attention kernel is particularly vulnerable
to the straggler effect with warp-parallel fusion.

4. Intra-thread. In intra-thread fusion, each thread alter-
nates between executing instructions of different opera-
tions [53, 59]. In simple cases, this strategy provides the
maximum opportunity to overlap different operations.
However, attention kernels use CTA-level sync barriers
to coordinate fetching data into shared memory. These
barriers limit intra-thread fusion as instructions before a
barrier cannot be overlapped with those after the barrier.

We now quantitatively analyze the performance of different
methods. Unfortunately, no readily available implementation
exists for CTA-parallel and intra-thread fusion. Hence, we
first analyze kernel-parallel and warp-parallel methods on
attention kernels and then investigate other methods.

3.2 Analysis of Readily Available Methods
For kernel-parallel execution, shown as FA_Streams in Fig-
ure 6, we run FA’s prefill and decode kernel on two different
CUDA streams. For warp-parallel execution (FA_HFuse), we
fuse FA’s kernels using the toolchain provided by [42]. Fig-
ure 6 compares their performance against serial execution
of FA’s prefill and decode attention kernels (FA_Serial). Our
experiment shows the per-layer attention computation time
of Yi-6B for 32 chunks of a 16K prompt (chunk size 512), each
co-scheduled with decodes of 16K context length each.

Note that if the number of CTAs in a kernel is not divisible
by the number of GPU SMs, some of the SMs in the last wave
of scheduling can remain idle — a phenomenon known as
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Figure 7. Fine-grained fusion versus serial computation.

wave quantization [38, 44]. In the worst case, a marginal
increase in work can double the latency of a kernel due to
wave quantization. Therefore, to fully understand the benefit
of concurrent execution, we evaluate performance with and
without wave quantization. Each decode request uses 4 CTAs
in our experiment (one CTA per KV head). Hence a decode
batch size of 54 uses 216 CTAs having no wave quantization
on our NVIDIA A100 GPU (108 SMs). In contrast, a batch
size of 55 uses 220 CTAs leaving 4 quantized CTAs.
FA_Streams provides some speed up over FA_Serial and

its gains are higher (up to 20%) when serial execution suffers
from wave quantization. This is because streams run ker-
nels in parallel to fill GPU SMs that would otherwise remain
idle. This effect can be seen in Figure 6 where FA_Streams
take roughly the same amount of time for both batch sizes
while the time taken by FA_Serial increases at batch size
55; in particular, decode time increases by more than 25%
in FA_Serial when batch size goes from 54 to 55 which in-
creases the total attention time of prefill and decode by up
to 17%. FA_HFuse outperforms FA_Streams is some cases
but its performance degrades quickly due to straggler effect
in the later chunks that are dominated by prefill. This hap-
pens because the prefill cost increases with each successive
chunk but decode cost is same in all hybrid batches. Over-
all, FA_Streams and FA_HFuse both perform better than
FA_Serial but still leave significant performance on the ta-
ble as shown by POD-Attention which outperforms both
methods by a significant margin.

3.3 Analysis of Other Methods
For complex kernels, such as attention, efficiently implement-
ing fine-grained fusion schemes is non-trivial and prone to
errors. Therefore, we analyze the performance of other fu-
sion methods with a simple micro-benchmark consisting
of a compute-bound kernel that repeatedly multiplies array
elements with a scalar, and a memory-bound kernel that
repeatedly adds three arrays. Each thread executes a barrier
after each operation. We vary the number of compute itera-
tions to evaluate performance under varying compositions
of compute-bound and memory-bound operations. Figure 7
shows the runtime of different fusion methods applied on
these two functions. At 100 compute iterations, both oper-
ations consume equal time when executed serially. To the
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left of this point, memory bound is more dominant. To the
right, it is compute bound. Figure 7 also shows the runtime
achievable with an ideal oracle (i.e., perfect overlap).
CTA and kernel-parallel cannot guarantee SM-level co-

location of compute-bound and memory-bound operations
and hence provides only marginal average improvement of
3% and 7% over serial execution. Intra-thread fusion outper-
forms both serial and CTA-parallel execution, on average by
13%. However, the benefit of intra-thread fusion is limited
due to sync barriers that hinder concurrent execution.
In summary, current methods for concurrently execut-

ing heterogeneous operations face several challenges, such
as stragglers, barrier-induced delays, and the inability to
guarantee SM-level co-location. In the following sections,
we demonstrate how a specialized fused kernel, designed to
leverage the characteristics of prefill and decode phases, can
overcome these challenges.

4 POD-Attention
We introduce POD-Attention— a single GPU kernel that ef-
ficiently computes both prefill and decode attention. Our pri-
mary goal is to ensure that each GPU SM computes both oper-
ations simultaneously while minimizing resource contention
between them. We build our kernel atop FA v2.6.1 [29].

To achieve our goal, we fuse computation along the CTA
dimension that helps avoid the pitfalls of finer-grained warp-
parallel and intra-thread fusion. In particular, CTA-parallel
fusion offers three advantages: 1) it allows different CTAs to
start and finish at different times independently of others,
2) ensures that sync barriers do not affect other parts of the
computation since the effect of a barrier is limited to within
its CTA, and 3) it is easier to program (§4.3). However, naive
CTA-parallel fusion cannot guarantee that prefill and decode
will be co-located on GPU SMs. To overcome this limita-
tion, we introduce software-based SM-aware CTA scheduling
wherein each CTA decides whether to compute prefill or decode
after it has been dispatched to an SM.

4.1 SM-aware CTA Scheduling
SM-aware CTA scheduling co-locates prefill and decode
CTAs through “runtime operation binding”. Here, a CTA
decides whether to perform prefill or decode at runtime, af-
ter checking: 1) which SM it got launched on [56], and 2)
what other CTAs running on the same SM are doing. This

1 if (threadIdx.x == 0) { // Leader thread finds assignment
2 int sm_id; // Find which SM this CTA is on
3 asm volatile("mov.u32 %0, %smid;" : "=r"(sm_id));
4 // For this SM, what do we want to run?
5 const int ratio = (prefill_ratio + decode_ratio);
6 int op, ticket = (atomicAdd(&sm_ctr[sm_id], 1) % ratio);
7 if(ticket < prefill_ratio) op = PREFILL;
8 else op = DECODE;
9 // Get the next CTA for operation
10 int cta_id = atomicAdd(&cta_assign[op], 1);
11 // If the CTA exceeds the max CTA for that op switch ops
12 if (op == PREFILL && cta_id >= prefill_ctas) {
13 op = DECODE;
14 cta_id = atomicAdd(&cta_assign[op], 1);
15 } else if (op == DECODE && cta_id >= decode_ctas) {
16 op = PREFILL;
17 cta_id = atomicAdd(&cta_assign[op], 1);
18 }
19 // Write the CTA ID and operation to shared memory
20 shared_mem[0] = cta_id;
21 shared_mem[1] = op;
22 }
23 __syncthreads(); // Barrier: waits for scheduling to finish
24 // Fetch the assigned CTA and operation.
25 int cta_id = shared_mem[0];
26 const int op = shared_mem[1];
27 __syncthreads();
28 // Perform the appropriate operation
29 if (op == PREFILL) prefill_op(cta_id);
30 else decode_op(cta_id)

Figure 9. CUDA code for SM-aware CTA scheduling.

allows the kernel to remain completely agnostic to how the
hardware scheduler assigns SMs to CTAs.

To do this, before launching the kernel, we determine how
many CTAs are required for prefill and decode independently,
and launch the kernel with CTAs matching the sum of both.
Each SM has a counter keeping track of the number of CTAs
launched on it along with 2 more counters that track the
number of prefill and decode CTAs executed on it so far.
Figure 9 shows a simple code snippet of SM-aware CTA

scheduling. When the hardware scheduler schedules a new
CTA on an SM, a leader thread of the CTA (e.g., thread 0)
reads the SMID hardware counter [13] that contains the
unique ID of the SM it was launched on (lines 2 - 3). The
thread then performs an atomic add operation on the SM
counter to obtain a ticket (line 6). This ticket informs the
thread as to which operation it should perform i.e., prefill
or decode (lines 7 - 8), depending on the scheduling policy.
The thread also increments the CTA counter for the oper-
ation (line 10). If this exceeds the maximum CTAs for that
operation, it switches operations (line 12 - 18). Finally, it
writes this information to shared memory so that the other
threads in the CTA can begin execution accordingly (lines
20 - 30). We examined two scheduling policies: 50:50 and
proportional. In the 50:50 policy, subsequent CTAs on an
SM alternate between prefill and decode. In contrast, the
proportional policy (line 5) allocates CTAs based on the ratio
of prefill and decode CTAs in the current batch.

4.2 Performance Optimizations
Simply co-locating prefill and decode operations does not
yield optimal performance. In this subsection, we introduce
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Figure 10. Impact of decode tile size on compute and HBM
BW utilization for batch sizes 8, 16 and 32.

various optimizations tomaximize the benefit of fusing prefill
and decode attention computation.

4.2.1 Tile Sizes. Data tiling is necessary to make effective
use of tensor cores, which provide ∼8× higher throughput
than their CUDA core counterpart [26]. Tiling also helps im-
prove shared memory usage. However, the benefit of tiling
is not uniform across operations. Decode operates on a sin-
gle token per request, having a tile length of one across the
query sequence length (QSL) dimension. In Group Query At-
tention [25], this length increases to the ratio between query
and KV heads, typically 2 – 8. Due to this small dimension
length, data reuse is insignificant, and performance is limited
by memory bandwidth.
FlashAttention uses tile lengths of 64 – 128 for the QSL

dimension. The side-effect of using such large tile sizes is
that decodes end up zero padded, causing redundant com-
pute [34]. For example, Figure 10a shows that compute uti-
lization of the decode attention kernel is proportional to
tile sizes, reaching up to 70% at QSL tile dimension of 128,
compared to 10% with tile dimension of 16. However, note
that decode attention is memory bound and hence, the pri-
mary objective of a decode kernel is to try and saturate
memory bandwidth. Figure 10b shows that even at a rela-
tively large QSL tile dimension of 64, the decode kernel is
able to maximize memory bandwidth utilization. Hence, for
a decode-only attention kernel, there is little incentive to
reducing tile sizes further.
In contrast, using large tile sizes for decodes is counter-

productive in a fused kernel: any redundant compute per-
formed by decodes interferes with co-located prefills since
tensor cores are shared between them. If we reduce unneces-
sary computation, prefill can make better use of the tensor
cores. To do so, we use a decode tile length of 16 for QSL,
the minimum needed by CUTLASS [11] for A100 tensor op-
erations. This drops the compute utilization of decodes to
∼10%, freeing up tensor cores for prefill. Figure 10b shows
that reducing tile size has no adverse impact on decode per-
formance at large batch sizes.

4.2.2 Concurrent CTAs per SM. The number of CTAs
running concurrently on an SM dictates the amount of re-
sources (e.g., shared memory) each CTA can have. More
CTAs per SM implies less resources per CTA, but more op-
portunities for fine-grained scheduling and co-location, i.e.,
with 2 CTAs per SM we can only co-locate prefills and de-
codes in a 1:1 ratio, but with 4 CTAs per SM, we can allocate
CTAs to prefill and decode in different proportion depending
on batch composition e.g., 3 CTAs to prefill and 1 CTA to de-
code. In general, prefills benefit from fewer CTAs per SM as
it allows each CTA access to more shared memory, enabling
use of larger tile sizes. In contrast, decodes do not benefit
from larger tile sizes and therefore using more CTAs per SM
can be beneficial since it allows fine-grained scheduling.

To achieve the best of both worlds, POD-Attention sup-
ports two configurations: 2 CTAs per SM for prefill-dominant
hybrid batches and 4 CTAs per SM otherwise. Based on the
desired configuration, wemodify the tile lengths and number
of threads used for prefill and decode. We also explored if 8
CTAs per SM can further improve performance and found
that it only marginally improves performance in a few cases
while under-performing in most cases. POD-Attention au-
tomatically picks the most suitable configuration at runtime.

4.2.3 Virtual Decode CTAs. The amount of shared mem-
ory provided to each prefill and decode CTAmust be same in
the fused kernel. However, because decode uses smaller tile
sizes, the shared memory requirement of decode is a quarter
of the prefill requirement. To avoid over-allocating shared
memory to decodes, we divide each decode CTA into virtual
CTAs containing a warp of threads. If the original decode
CTA has four warps, each virtual CTA contains one warp
which uses a quarter of the shared memory of the original
CTA. The sum of shared memory used by all the virtual
CTAs in each regular CTA is close to the shared memory
used by prefill. This way, virtual decode CTAs balance the
shared memory used by prefill and decode.

4.2.4 Limiting Prefill Splits. FlashAttention parallelizes
computation across the query heads and QSL tile dimension.
FlashDecoding [31], designed for decode which has a QSL
of one, further splits the computation across the K/V dimen-
sion when there is not enough parallelism to fill the SMs of
the GPU. The side-effect of this approach is that different
CTAs fetch the same query tensor from memory indepen-
dently of each other, proportional to the number of splits.
Consequently, splitting the computation increases memory
bandwidth utilization. While splitting along the key/value di-
mension is not required for prefills when the input contains
enough tokens, chunked-prefills limit the number of tokens
processed per-iteration by design (to minimize TBT). There-
fore, FlashAttention also uses the FlashDecoding technique
to accelerate the chunked-prefill attention computation. This
scheme works well for a prefill-only kernel as increased par-
allelism can easily offset the cost of extra memory reads.
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However, in a fused kernel, using a large number of splits
for chunked-prefills can causememory bandwidth contention
between prefill and decode CTAs, potentially negating the
benefit of fusion. To balance this trade-off, we limit the num-
ber of splits for a chunked-prefill to fill at most two full waves
(determined empirically). This allows a chunked-prefill to use
more CTAs when required, while ensuring that the number
of splits do not get excessive and harm concurrent decodes.

4.3 Implementing CTA-parallel Fusion
To fuse the two kernels, we first convert them into generic
device functions callable from within GPU code while re-
moving all references to the CUDA-provided CTA ID (i.e.,
blockIdx), instead passing this as a function parameter. We
build a wrapper kernel that calls these different functions
using a calculated CTA ID. The prefill and decode operations
execute as if the supplied CTA ID was their actual ID. This
enables flexible remapping of CTA IDs, e.g., CTA 0 of the
fused kernel can invoke prefill with CTA ID 0, CTA 1 can
call decode with ID 0, CTA 2 can call prefill with ID 1, and so
on. The amount of shared memory each CTA gets is fixed at
kernel launch time, and prefill and decode operations have
different requirements. To manage this, we hand-tune the
shared memory usage of both prefill and decode operations
to balance their requirements while minimizing performance
degradation. We launch our fused kernel with enough shared
memory for the maximum needed by either operation. To
implement virtual CTAs, we modify the decode function
replacing all CTA-level barriers with warp-level barriers.
The decode function in the fused kernel is called with the
appropriate virtual CTA ID, instead of the assigned CTA ID.

4.4 Discussion on Alternative Implementations
Concurrent execution is a well studied topic in GPU litera-
ture [40, 43, 55, 61], and our high-level goal of overlapping
prefill and decode attention computation can be achieved
in multiple ways. One noteworthy strategy is based on per-
sistent threads [32, 45, 63]: in this method, one launches a
pre-determined number of CTAs (enough to perfectly fill all
the SMs). Persistent threads of these CTAs pull the right type
of work as necessary (e.g., prefill or decode tiles). We find
that this strategy also alleviates the straggler problem. How-
ever, SM-aware scheduling is still needed to decide what
work (prefill or decode) to run on which persistent CTA,
critical to guaranteeing operation co-location within an SM.
Upon integrating it with SM-aware scheduling, we find that
this strategy performs on par with our CTA-parallel fusion.
NVIDIA also provides MPS (multi-process service) [10]

and MIG (multi-instance GPUs) [9] features to run differ-
ent applications in parallel on the same GPU. However, be-
cause hybrid batching combines prefill and decode opera-
tions within a single process by design, MPS and MIG are
inapplicable to our use case.

Model GPU # Q Heads # KV Heads # Layers
Yi-6B 1 A100 32 4 32
Llama-2-7B 2 A100s 32 32 32
Llama-3-8B 2 A100s 32 8 32

Table 4. Models and hardware used for evaluation.

5 Evaluation
Our evaluation answers the following questions:
• What is the effect of POD-Attention on attention com-
putation latencies?

• How does POD-Attention affect end-to-end LLM infer-
ence performance?

• What is the impact of different optimizations and design
choices employed in POD-Attention?

Models and environment:We evaluate POD-Attention
with Yi-6B (4 KV heads [20]), Llama-2-7B (32 KV heads [6])
and Llama-3-8B (8 KV heads [8]), deploying Yi-6B on one
A100 GPU, and others on two A100 GPUs with tensor paral-
lelism (Table 4). Each model has 32 query heads. Each GPU
has 80GB HBM memory.
Workloads and metrics: We evaluate both offline and on-
line inference scenarios. For offline inference, we report the
number of requests processed per minute. For online infer-
ence, we report TTFT, TBT and request execution latency
on two workloads consisting of 2K requests each, and con-
text length ranging from 4K to 32K tokens per-request. One
of the workloads is an internal enterprise workload (mean
context length of 10.5K tokens, per-request prefill to decode
token ratio i.e., P:D in the range of 0 – 40) and the other is
based on arXiv-Summarization [4] (mean context length of
9.5K tokens, P:D ratio of 0-50). On average, the number of
decode tokens in arXiv workload is 42% higher (470) than
the internal workload (331).
Serving system baselines: Our experiments use Sarathi-
Serve [15] as the serving framework, which is built atop
vLLM [19] . We evaluate two baselines: 1) the original vLLM
scheduler [41] that runs prefills and decodes in separate
batches, prioritizing prefills over decodes and 2) Sarathi-
Serve [23]. Both baselines use FlashAttention kernels (v2.6.1)
for attention computation. We integrate POD-Attention
into Sarathi-Serve to evaluate the benefits of our optimiza-
tions. For simplicity, we refer to Sarathi-Serve without and
with POD-Attention as Sarathi and Sarathi+POD.

5.1 Evaluating Attention Computation
Figure 6 illustrates a specific instancewhere POD-Attention
accelerates attention computation, outperforming the next
best alternative by up to 29%. To demonstrate the broad appli-
cability of POD-Attention, we conducted a comprehensive
sweep across over a thousand hybrid batches on our models.
In these experiments, we varied the context length from 4K
to 20K and the prefill chunk size from 512 to 2K. We focused
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Figure 11. Distribution of speedup in attention computation
with different mechanisms compared to FA_Serial.

on scenarios where prefill and decode attention account for
at least 20% of the serial runtime, as other cases offer limited
potential for optimization through operation fusion.
In addition to FlashAttention kernels, we also compare

the runtime of FlashInfer (FI) v0.2.0 kernels [60] in two con-
figurations: FI_Serial and FI_Batched. FI_Batched computes
prefill and decode attention using the prefill kernel of Flash-
Infer. We compare against FI_Batched for two reasons: 1) this
strategy is the easiest way to compute prefill and decode at-
tention together, and 2) some systems prefer this method e.g.,
Sarathi used FI_Batched in its default attention back-end [7],
and a similar feature is requested in vLLM [17]. However, we
show that this strategy is inefficient e.g., when FI_Batched
uses a prefill-optimized kernel, it leads to redundant compute
in decode computation due to use of larger tile sizes (§4.2.1).
This redundant computation interferes with co-running pre-
fill. Similar interference occurs on memory-bandwidth if
FI_Batched uses a decode-optimized kernel.

Figure 11 shows the relative speedup for different mecha-
nisms compared to FA_Serial. FA_Streams provides limited
speedup as it cannot guarantee SM-level overlap of oper-
ations. In rare cases, we find that the overhead of stream
synchronization can also negate its benefits. FI_Serial has
better optimized decode kernels giving it a modest improve-
ment over FA_Serial, but it does not overlap the operations.
FI_Batched improves performance at low context lengths,
but degrades at higher lengths by up to 40% due to redundant
computation for decodes. FA_HFuse is the strongest base-
line as it guarantees operation overlap, improving median
performance by 11%. However, FA_HFuse is susceptible to
the straggler effect due to which it is slower by up to 13%
compared to FA_Serial. The straggler effect can also be seen
in Figure 6 towards the later chunks where prefill is more
dominant, making it hard to achieve perfect utilization.
POD-Attention reaches a peak speedup of 59%, and

a mean of 28% — higher than all alternatives. We found
that in 25% of cases, it also reaches within 10% of the theo-
retical peak speedup, signifying near-perfect overlap. Fur-
thermore, unlike other alternatives, POD-Attention never
under-performs serial execution. These results underline
the importance of a specialized attention kernel for hybrid-
batching-based LLM inference.
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Figure 12. Serving throughput in offline inference.

Additionally, we profiled the energy consumption of the at-
tention kernels and observed that POD-Attention reduces
energy consumption by up to 35% over FA_Serial (mean
20.5%). These savings are largely proportional to the reduc-
tion in runtime, showing that prefill-decode overlap not only
improves performance but also reduces energy consumption.

5.2 Evaluating Throughput in Offline Inference
For evaluating offline inference scenarios, we run long con-
text requests of 16K tokens each. We use chunk size 512 for
Yi-6B, and 1K for both Llama-2-7B and Llama-3-8B, chosen
in a way that chunking a prompt does not reduce the perfor-
mance of linear operations (as recommended by Sarathi [23,
24]). We run 1K total requests for Yi-6B, and 2K requests
each for Llama-2-7B and Llama-3-8B such that the total run-
time of a single configuration is about one hour. The number
of output tokens per-request is set to 2K for Yi-6B, 1K for
Llama-3-8B and 256 for Llama-2-7B; we study the effect of
varying prefill to decode token ratio (P:D ratio) in §5.4.4.

Figure 12 shows that Sarathi+PODdelivers the best through-
put: 22%, 20% and 19% higher than Sarathi, and 27%, 13% and
12% higher than vLLM, for the three models. It is worth
highlighting that chunked-prefills and hybrid batching in-
volves a tradeoff. Chunking a prompt increases attention
computation time due to repeated KV cache loads: comput-
ing attention of a prefill chunk requires reading KV cache
of all prior chunks [65]. At the same time, fusing decode
tokens with prefills helps execute linear operations more
efficiently: model weights need not be read separately for
prefills and decodes. Therefore, the relative performance of
vLLM and Sarathi can vary depending on workload, model
configuration and chunk size. In our experiments, Sarathi
improves throughput slightly over vLLM for Yi-6B but under-
performs it for Llama-2-7B and Llama-3-8B. Sarathi+POD
fuses prefills and decodes in all operations to improve GPU
resource utilization, thereby outperforms both baselines.

5.3 Evaluating Latency in Online Inference
We evaluate Llama-3-8B on the internal and arXiv-based
workloads near the serving capacity of the system: the maxi-
mum load a system can handle while avoiding high queuing
delays [23]. We evaluate 2048 requests in each workload by



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Aditya K Kamath et al.

QPS System TTFT TBT Request Latency % Requests with Stalls
P50 P99 P50 P99 P50 P99 200ms 500ms

1.1
vLLM (original) 0.67 10.11 0.04 1.13 25.05 91.01 99.95 97.8

Sarathi 2.2 12.58 0.10 0.15 26.83 92.24 2.05 0
Sarathi+POD 1.9 12.26 0.10 0.14 24.70 79.04 3.17 0

1.2
vLLM (original) 0.94 12.70 0.07 1.76 42.73 151.8 99.95 99.6

Sarathi 25.44 57.83 0.12 0.16 67.12 140.5 5.07 2.63
Sarathi+POD 7.49 23.78 0.11 0.15 38.69 106.8 2.29 0

Table 5. Internal workload. Latency numbers in seconds.

QPS System TTFT TBT Request Latency % Requests with Stalls
P50 P99 P50 P99 P50 P99 200ms 500ms

0.85
vLLM (original) 0.55 6.26 0.03 0.82 20.53 234.93 99.9 97.8

Sarathi 2.68 14.89 0.08 0.13 27.87 281.07 4.15 2.05
Sarathi+POD 1.85 12.71 0.08 0.11 24.31 255.75 1.85 1.61

0.95
vLLM 0.71 8.25 0.06 1.36 36.86 401.2 99.9 99.45

Sarathi 46.22 144.2 0.1 0.14 90.12 417.6 4.44 1.9
Sarathi+POD 11.74 27.38 0.09 0.12 40.6 333.0 2.2 2.1

Table 6. arXiv-based workload. Latency numbers in seconds.

varying the input load based on Poisson distribution. For
Sarathi and Sarathi+POD, we use chunk size of 1024 for
the arXiv-based workload, and 1536 for the internal work-
load which is more prefill-heavy. We discuss performance
on important LLM-specific latency metrics of TTFT, TBT,
and end-to-end request execution latency.
Note that there is an inherent trade-off between these

metrics [23] and optimizing for one metric can severely com-
promise the others. For example, as will see below, vLLM
prioritizes prefills and thus achieves low TTFT but sacrifices
TBT, resulting in 95+% of user requests experiencing one or
more stalls during decode generation. On the other hand,
Sarathi reduces the stalls to a small % of user requests but
significantly increases TTFT compared to vLLM.

5.3.1 TTFT. vLLM provides the lowest TTFT as it sched-
ules a prefill on the first available opportunity. In comparison,
Sarathi increases TTFT because the ongoing decodes inter-
fere with prefills. TTFT in Sarathi further increases with the
load, particularly due to higher queuing delays, e.g., the me-
dian TTFT goes to 25.4 and 46.2 seconds for the internal and
arXiv-based workloads, compared to 0.94 and 0.71 seconds of
vLLM. Sarathi+POD significantly reduces TTFT over Sarathi,
bringing the median TTFT down to 7.5 and 11.74 seconds at
higher load. Sarathi+POD also reduces the P99 TTFT by up
to 4.3× over Sarathi.

5.3.2 TBT and Stalls. vLLM induces generation stalls by
pausing on-going decodes whenever a new prefill is sched-
uled, resulting in poor interactivity with the LLM service.
These generation stalls are reflected as high tail TBT latency,
e.g., the P99 TBT of vLLM reaches up to 1.76 seconds (in-
ternal workload) and 1.36 seconds (arXiv-based workload).

Latency
Metric

vLLM
(original)

Sarathi+POD
1024 1536 2048

TTFT (P50) 0.67 6.29 1.9 1.59
TTFT (P99) 10.11 18.99 12.26 12.40
TBT (P50) 0.04 0.08 0.10 0.08
TBT (P99) 1.13 0.11 0.14 0.18

Table 7. TTFT and TBT of Sarathi+PODwith different chunk
sizes versus vLLM (internal workload, QPS 1.1).

In the worst-case, we observe that the highest TBT latency
reaches up to 8 seconds in vLLM when it computes multiple
prefills consecutively. In comparison, Sarathi ensures that
ongoing decodes do not get affected by a new prefill. There-
fore, Sarathi provides significantly lower tail TBT latency
compared to vLLM e.g., the P99 TBT of Sarathi is at most
0.16 seconds (10× lower than vLLM). Sarathi+POD further
minimizes tail TBT over Sarathi by 10 – 20%. Crucially, since
a single response results in a large number of decodes, high
TBT tail latency affects nearly all requests in vLLM, signify-
ing poor interactive experience for almost all users. Even if
the TBT SLO is raised to 500ms, more than 97% of the total
requests experience at least one stall in vLLM. In contrast,
very few requests (<5%) observe a stall in Sarathi, which
Sarathi+POD further reduces in most cases.

5.3.3 End-to-end Request Latency. Request latency can
be used to approximate system throughput in online infer-
ence. Sarathi reduces P99 request latency over vLLM by 8%
for the internal workload at QPS 1.2, but increase it by up
to 24% over vLLM for the arXiv-based workload (QPS 0.85).
Sarathi+POD is not only better than Sarathi in all cases, but
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(a) 2 CTAs per SM. (b) 4 CTAs per SM.

Figure 13. POD-Attention with varying CTA configs.

also outperforms vLLM in many cases e.g., it reduces the P99
request execution latency by up to 42% over vLLM for the
internal workload (106.8 seconds vs 151.8 seconds at QPS 1.2)
and by up to 17% for the arXiv-based workload (333 seconds
vs 401.2 seconds at QPS 0.95).

These results demonstrate that Sarathi enhances interac-
tivity by reducing tail TBT and minimizing stalls, albeit with
increased TTFT and some throughput reduction compared
to vLLM. POD-Attention optimizes Sarathi ’s performance
across all metrics, effectively balancing the throughput-latency
tradeoff. Table 7 shows that the chunk size in Sarathi+POD
can be tuned further to navigate the TTFT and TBT trade-off,
e.g., using a larger chunk size of 2K tokens lowers the median
TTFT from 6.3 seconds to 1.6 seconds at the cost of higher
TBT (P99 0.18 seconds vs 0.11 seconds).

5.4 Sensitivity Studies
5.4.1 CTAs per SM. Figure 13 shows the performance of
POD-Attention with different numbers of CTAs running
concurrently on an SM, varying batch sizes (horizontally)
and context lengths (vertically) for Llama-3-8B. For each
(context length, batch size) data point, we normalize the
runtime to the best among the two configurations. In general,
for long contexts where prefill cost dominates, 2 CTAs per SM
performs better as it allows for larger tile sizes. As the context
length decreases, the decode cost starts demonating and
hence 4 CTAs per SM starts performing better: more CTAs
per SM allows packing more decodes with fewer prefills, e.g.,
1 prefill CTA and 3 decode CTAs.

5.4.2 Scheduling Policy. We explore two CTA scheduling
policies within an SM, namely 50:50 allocation and Propor-
tional allocation. In 50:50 allocation, CTAs launched on an
SM alternate between prefill and decodes, i.e., the first CTA
performs prefill, the next decode, and so on. This policy is ag-
nostic to the total number of prefill and decode CTAs in the
kernel. In Proportional allocation, the CTAs pick whether
to perform prefill or decode depending on the total num-
ber of CTAs in the kernel. For example, if 50 prefill and 100
decode CTAs are required, the first CTA on each SM will
perform prefill, the next two CTAs will perform decode, then
repeat. Figure 14 shows the latency of POD-Attention
with these policies for 8K context length and varying de-
code batch sizes on Yi-6B and Llama-3-8B. We notice that
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Figure 14. Effect of scheduling policy in POD-Attention.

Chunk Id FA_Serial POD-Attention
Vanilla split Limited split [Ours]

28 1.93 1.68 (0.87×) 1.45 (0.75×)
29 1.96 1.69 (0.86×) 1.45 (0.74×)
30 1.98 1.71 (0.86×) 1.45 (0.73×)
31 1.99 1.71 (0.86×) 1.46 (0.73×)

Table 8. Per-layer attention runtime (ms) of last four prefill
chunks of a prompt, co-running with decode batch size 64
(model: Llama-3-8B, context length: 16K, chunk size: 512).

as the load increases (greater batch size), the performance
of Proportional improves over 50:50 allocation. Proportional
allocation spreads out the less frequent operations allowing
better operational overlap and reduced resource contention,
performing up to 14% better than a 50:50 allocation scheme.

5.4.3 Limiting Prefill Splits. POD-Attention reduces
attention computation time with the default FlashDecoding-
style splitting along the KV dimension. However, limiting
the number of splits further improves performance. For ex-
ample, Table 8 shows that in the last four chunks of a 16K
prompt, co-running with 64 decode requests of the same con-
text length, limiting the number of splits in prefill attention
computation nearly doubles the speedup of POD-Attention
over FA_Serial.

5.4.4 Sensitivity to Workload. POD-Attention accel-
erates the execution of hybrid batches and hence its impact
on overall performance depends on how many iterations
consist of hybrid batches in a given workload. A workload
that is highly dominated by either prefills (high P:D ratio) or
decodes (low P:D ratio) is likely to experience little benefit
with POD-Attention. To understand the effect of varying
P:D ratio, we benchmark Llama-3-8B with a total of 2048
requests, each consisting of ≈ 16.5K tokens, but with vary-
ing P:D ratio (in the range of 8 to 24) e.g., if the P:D is 10,
then a request contains ≈15K prefill tokens and ≈1.5K de-
code tokens. Figure 15 shows that Sarathi+POD outperforms
Sarathi over varying workload mixes. The peak gains oc-
cur in the P:D range of 12 to 18 because most batches are
hybrid batches in this regime. In contrast, many iterations
run decode-only batches when P:D ratio is lower than 12 (or
prefill-only batches when P:D ratio is higher than 18).
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Figure 15. Request processing throughput under varying
workload distribution (model: Llama-3-8B, TP-2).

6 Related Work
Optimizing GPU execution and LLM serving systems is an
active area of research [21, 23, 27, 33, 35, 36, 38, 39, 41, 46–
48, 52, 57, 62, 64–66].
Optimizing Attention Computation: FlashAttention [30]
introduced the first specialized implementation of atten-
tion, fusing all its operations into a single kernel with tile-
based computation. FA-2 [29] improved it further with better
work partitioning and load balancing. FlashDecoding [31]
accelerates decode attention by splitting computation along
the KV dimension. FlashDecoding++ [34] uses asynchro-
nized softmax, double-buffered flat GEMM optimizations,
and dataflow-based hardware resource adaptation to accel-
erate decode. LeanAttention [48] follows Stream-K reduc-
tion [44] of tiled calculation to enable better load distribution
across SMs for decodes. FlashInfer [60] introduced shared-
prefix based optimized attention kernels. Compared to works
that separately handle prefill and decode, POD-Attention
jointly optimizes and fuses them into a single kernel.

FA-3 [49] is a recent addition to the FlashAttention family
of kernels. It leverages new features available in the NVIDIA
Hopper architecture, exploiting the asynchrony of Tensor
Cores, the Tensor Memory Accelerator, and the Special Func-
tion Units. FA-3 was under active development at the time
of writing this paper and hence we leave extending POD-
Attention support to FA-3 and Hopper architecture for
future work.
Operation Fusion: Kernel fusion is a commonly used tech-
nique for improving GPU performance. Elastic kernels [45]
proposes restricting resources to enable runningmultiple ker-
nels concurrently. However, this method provides no guar-
antee of intra-SM co-location. To overcome this, ISPA [63]
deploys a predetermined number of CTAs for each kernel,
less than the number of CTAs that run concurrently on the
GPU. Significant a priori profiling is used to determine the
appropriate CTA sizes to allow for both kernels to execute
concurrently. This can be tedious for attention kernels with
dynamically changing input sizes, and makes load balancing
between the prefill and decode operations difficult, as one

operation completing early leaves resources underutilized.
HFuse [42] fuses operations in warp-parallel fashion, pro-
viding source-to-source compilation tools to fuse kernels.
SM-centric scheduling [56] uses the SM counter to assign
work to CTAs, which we leverage in POD-Attention.
Optimizing LLM Inference: Optimizing LLM serving sys-
tems is an active area of research [23, 33, 36, 41, 46, 50–
52, 57, 58, 62]. Orca [62] introduced iteration-level schedul-
ing to eliminate compute fragmentation when requests of dif-
ferent lengths are batched together. PagedAttention [41] and
vAttention [47] proposed different techniques for dynamic
memory management for LLM inference. Sarathi-Serve [23]
leverages chunked prefills to enable stall-free batching. In
contrast, Splitwise [46], DistServe [65] and TetriInfer [35] dis-
aggregate the prefill and decode phases onto different GPU
nodes to avoid interference between these phases. Various
recent works have also proposed overlapping compute with
communication to improve resource utilization [28, 37, 54].
Similar to POD-Attention, NanoFlow [66] also targets

improving intra-device resource utilization, albeit with a
contrasting approach. NanoFlow divides a batch into smaller
operation-level nano-batches and schedules them in a way
that overlaps operations with complementary resource pro-
files via CUDA streams. In contrast, POD-Attention tries to
maximize resource-utilization within a given batch by fusing
prefill and decode attention computation. While NanoFlow
requires large batch sizes in order to benefit from batch
splitting, POD-Attention is useful when attention con-
sumes a significant amount of time. Therefore, NanoFlow
seems more suitable for small-context scenarios whereas
POD-Attention targets long-context scenarios that depend
on hybrid batching for efficient LLM serving.

7 Conclusion
We introduce POD-Attention — the first attention kernel
specialized to compute prefill and decode attention in paral-
lel such that both compute and memory bandwidth of a GPU
can be utilized simultaneously. POD-Attention enables ef-
ficient hybrid batching based LLM inference by accelerating
attention computation by up to 59% (mean 28%) compared to
using independently optimized prefill and decode attention
kernels. POD-Attention also improves the end-to-end serv-
ing throughput by up to 22%, while significantly reducing
latency over state-of-the-art LLM serving systems Sarathi-
Serve and vLLM.
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A Artifact Appendix
A.1 Abstract
POD-Attention is a GPU kernel that overlaps prefill and
decode attention operations for large language models. POD-
Attention is built on top of FlashAttention kernels (v2.6.1)
[29] and is integrated with Sarathi-Serve [23] – a state-of-
the-art hybrid batching based LLM inference scheduler.

A.2 Artifact check-list (meta-information)
• Compilation: CUDA 12.4, GCC 11.4.
• Model: Llama-2-7B [6], Llama-3-8B [8], Yi-6B [20].
• Data set: arXiv-Summarization [4].
• Run-time environment: Ubuntu 22.04, CUDA 12.4, Python
3.12, and PyTorch 2.4.

• Hardware: 1–2 NVIDIA A100 80 GB GPUs, x86 machine.
• How much time is needed to prepare workflow?: 1 minute
with Docker image. 1–2 hours if installing from source.

• How much time is needed to complete experiments (ap-
proximately)?: Approx. 18 hours.

• Publicly available?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.14770841

A.3 Description
A.3.1 How to access. We provide the source code in vari-
ous forms: Docker container (see A.3.3), GitHub repository
(https://github.com/microsoft/vattention/tree/main/pod_attn),
and Zenodo (https://doi.org/10.5281/zenodo.14770840).

A.3.2 Hardware dependencies. This artifact requires an
x86 machine with 2 NVIDIA A100 GPUs with 80GB memory
each. If only one GPU is available, all experiments can be
conducted in full, except for Table 6 and the results for Llama-
2-7B and Llama-3-8B in Figure 12.

A.3.3 Software dependencies. POD-Attention has been
tested on a machine with Ubuntu 22.04. All other software
dependencies are resolved while installing.

A.3.4 Data sets. Some experiments are based on the arXiv-
Summarization dataset. We use a subset of the dataset avail-
able in the traces/ folder of the artifact.

A.3.5 Models. This artifact evaluates Yi-6B, Llama-2-7B
and Llama-3-8B. Accessing Yi-6B and Llama-2-7B is straight-
forward but accessing Llama-3-8B requires logging into hug-
gingface with the user’s private token (HF_TOKEN below):
$ huggingface-cli login --token HF_TOKEN

A.4 Installation
We provide two methods of installing and testing: using
Docker (recommended) or manual installation.

A.4.1 Docker installation (recommended). We provide
a docker image for POD-Attention with all its dependen-
cies pre-installed. You can launch the docker container and
navigate to the artifact directory as follows:

$ docker run --gpus all -it \
-p 8181:8181 --rm --ipc=host --cap-add=SYS_ADMIN \
rnp1910/pod_attention:asplos_25_pytorch_run

$ cd /workspace/vattention/pod_attn

A.4.2 Manual installation. For manual installation, we
can download POD-Attention (available in vAttention repos-
itory) to home directory to install it. We use Anaconda for
the appropriate versions of CUDA, Python, and PyTorch.
This can take up to 2 hours.
$ git clone \
https://github.com/microsoft/vattention.git

$ cd vattention/pod_attn/
# Install miniconda; skip if already installed
$ make install_miniconda
$ bash # Refresh shell and activate
$ conda activate pod_attn
# Install CUDA Toolkit
(pod_attn)$ conda install -y -c \
conda-forge cuda-toolkit=12.4.0

# Install dependencies
(pod_attn)$ pip install -r requirements.txt
(pod_attn)$ pip install flashinfer==0.1.5 \
-i https://flashinfer.ai/whl/cu124/torch2.4

# Install POD-Attention and vAttention
(pod_attn)$ make install_all

A.5 Experiment workflow
The source code for POD-Attention kernel is available in
the vattention/pod_attn/ folder. Our evaluation primar-
ily contains two kinds of experiments: attention performance
(Figures 1, 6, 10, 11, 13, 14) and end-to-end LLM performance
(Figure 12 and Table 6). Figure 7 evaluates various kernel
fusion strategies with a micro-benchmark. Most of these
require only one GPU except for Table 6 and Figure 12 (for
Llama-2-7B and Llama-3-8B) that require two GPUs. Use the
Makefile present in the vattention/pod_attn/ folder to
run experiments as follows:
make figure1 # 2 minutes; sudo used by script
make figure6 # 2 minutes
make figure7 # 2 minutes
make figure10 # 1 minute; sudo used by script
make figure11 # 2 hours
make figure12 # 9 hours
make figure13 # 1 minute
make figure14 # 1 minute
make table6 # 4 hours

A.6 Evaluation and expected results
The artifact scripts redirect the raw output numbers and logs
to output/ folder, while the plotted graphs can be found in
the graphs/ folder. Tables are saved as CSVs in the same
folder. Results may haveminor runtime variations from those
reported in in the paper, but general trends should hold.

https://github.com/microsoft/vattention/tree/main/pod_attn
https://doi.org/10.5281/zenodo.14770840
https://github.com/microsoft/vattention
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