
GPM: Leveraging Persistent Memory from a GPU
Shweta Pandey∗

shwetapandey@iisc.ac.in
Indian Institute of Science

Bangalore, India

Aditya K Kamath†∗
adityakamath@iisc.ac.in
Indian Institute of Science

Bangalore, India

Arkaprava Basu
arkapravab@iisc.ac.in

Indian Institute of Science
Bangalore, India

ABSTRACT
TheGPU is a key computing platform formany application domains.
While the new non-volatile memory technology has brought the
promise of byte-addressable persistence (a.k.a., persistent memory,
or PM) to CPU applications, the same, unfortunately, is beyond the
reach of GPU programs.

We take three key steps toward enabling GPU programs to ac-
cess PM directly. First, enable direct access to PM from within a
GPU kernel without needing to modify the hardware. Next, we
demonstrate three classes of GPU-accelerated applications that
benefit from PM. In the process, we create a workload suite with
nine such applications. We then create a GPU library, written in
CUDA, to support logging, checkpointing, and primitives for native
persistence for programmers to easily leverage PM.

CCS CONCEPTS
• Computer systems organization→ Processors and memory
architectures.

KEYWORDS
Graphics Processing Unit; Persistent Memory; Crash consistency
ACM Reference Format:
Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2022. GPM: Lever-
aging Persistent Memory from a GPU. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’22), February 28 – March 4, 2022, Lausanne,
Switzerland. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3503222.3507758

1 INTRODUCTION
Non-volatile memory (NVM) technologies promise to blur the long-
held distinction between memory and storage by enabling byte-
grained durability at latencies comparable to DRAM [77]. We define
persistent memory (PM) as NVM accessible via loads and stores at
a byte granularity [64]. Thanks to many years of research on the
CPU’s software and hardware stack for PM (e.g.,[18, 19, 29, 31, 42,
∗Both authors contributed equally to this work.
†The author is currently affiliated with University of Washington. The author con-
tributed toward this work when he was a research assistant at the Indian Institute of
Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507758

PmemKV RocksDB-KVS MatrixKV GPM-KVS

2.7x 5.8x3.1x

Intel RocksDB Matrix MegaKV
PMKV PM KV +GPM

2.5

2.0

1.5

1.0

0.5

0

Th
ro

u
gh

p
u

t
(M

o
p

s/
s)

(a) Throughput of pKVS.

0

10

20

30

BFS SRAD PS

BFS SRAD PS

2.8

19.2

27

Sp
e

e
d

u
p

 o
ve

r
C

P
U

(b) Speedup over CPUPMapps.

Figure 1: Benefits of GPM over CPU with PM.

54, 93]), and with the recent commercialization of Intel’s Optane
NVM [37], PM’s promise of revolutionizing computing through fast
byte-grained persistence and recoverability seems close to reality.

The graphics processing unit (GPU) is a key computing platform
today but is deprived of direct access to PM. We find important
applications that can benefit from both the GPU’s parallelism and
the fine-grained persistence of PM. Consider persistent key-value
stores (KVS) that leverage PM’s fine-grain persistence. Today, they
are limited to CPUs [38, 79, 100]. Independently, researchers have
shown that GPUs can significantly improve KVS’s throughput [102].
Fine-grained persistence to PM from the GPU could enable both.
Figure 1a provides a glimpse of its potential performance benefits.
The first three bars show throughputs of batched SET operations
(8B keys and values) on PM-optimized state-of-art commercial KVS
(Intel’s pmemKV [38] and RocksDB-pmem [79]) and academic KVS
([100]) on a many-core CPU. The fourth bar shows throughput with
a GPU-enabled KVS, MegaKV [102], ported onto our system named
GPM, to leverage PM’s persistence with 23 lines of code changes.
GPM (GPU with Persistent Memory) enables fine-grain persistence
to GPU kernels (programs). GPM improves throughput by 2.7-5.8×
over today’s multi-threaded CPU alternatives.

Many other applications, e.g., breadth-first search (BFS), image
processing (SRAD), and prefix sum (PS) benefit from fine-grained
persistence while leveraging GPU’s parallelism. They speed up by
2.8-27× over their multi-threaded CPU alternatives that use PM for
persistence (Figure 1b).

Today, if an application wishes to leverage PM’s persistence, it
would typically perform both computation on the CPU and ensure
persistence of results from the CPU. Alternatively, one can use a
GPU for computation then transfer the results to the CPU’s memory
and rely on the CPU to guarantee persistence for recoverability
in presence of failures. We call this alternative that uses GPU as
CPU-Assisted Persistence (CAP).

Unfortunately, CAP has several shortcomings. Its inability to
efficiently guarantee persistence of PM-resident data structures at
a fine granularity from the GPU impedes programmers’ abilities to
create recoverable GPU kernels. Second, GPUs accelerate compu-
tation through massive parallelism. Many benefits of parallelism
are lost by relying on the CPU to persist results of GPU computa-
tion. Third, sometimes only a fraction of data is updated during

https://doi.org/10.1145/3503222.3507758
https://doi.org/10.1145/3503222.3507758
https://doi.org/10.1145/3503222.3507758

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

computation. However, which data would be updated is not known
apriori [2, 12, 14]. Since the GPU cannot directly persist results
while computing, extraneous data could be transferred to and per-
sisted by the CPU. In short, GPU kernels today cannot harness the
full benefits of the byte-grained low-latency persistence of PM.

We thus create GPM where GPU kernels can directly manipulate
PM-resident data structures and guarantee persistence wherever
desired in the kernel without the CPU’s or OS’s help.

Currently, there is no hardware with NVM onboard the GPU. An
incarnation of GPM is still realizable without new hardware. The
NVM (Intel Optane) is placed alongside the DRAM, as in a typical
Intel Xeon server, and can be accessed by a GPU over the PCIe
interconnect. GPM leverages NVIDIA’s Uniform Virtual Address
(UVA) to map desired portions of NVM onto the virtual address space
of a GPU kernel. Kernels can access and manipulate PM-resident
data structures at byte granularity using loads and stores.

To compose programs that are recoverable in the presence of
crashes or power failures, a programmer must be able to guaran-
tee persistence of data to PM (i.e., a persist) wherever programs’
semantics demand. A persist operation typically requires flushing
contents of volatile cache lines to PM and waiting for these flushes
to finish. Unfortunately, unlike CPUs, today’s GPUs are not de-
signed for PM and thus, do not have instructions to flush cache
lines [34, 69]. However, we find that a fence operation with system
scope (__threadfence_system() in CUDA) ensures that all writes to
the system (host) memory before the fence are made visible to the
entire system, including the host (CPU). While the original purpose
of the fence was synchronization between the CPU and GPU, it pro-
vides the semantics needed for persist operations. This is because
in GPM, the NVM is a part of the system memory, alongside DRAM.

The system-scoped fence alone is not sufficient to create persist
operations for GPUs. Another seemingly unrelated feature stops
writes from reaching PM immediately. When an Intel Xeon proces-
sor’s Data Direct IO (DDIO) feature is enabled (default), writes to
the system memory by IO devices, e.g., NIC, GPU, are cached in
the CPU’s last level cache (LLC) [33, 44, 96] . Consequently, the
fence completes as soon as the writes reach the CPU’s volatile
LLC. GPM, therefore, selectively disables DDIO when persistence is
needed. This ensures that the system-scoped fence completes only
when the persistence of writes to PM is guaranteed.

In short, we use UVA to map PM to GPU’s address space, and
system-scoped fence with selective disabling of DDIO to create GPM
out of Xeon servers with Optane NVM and NVIDIA GPUs.

A new system is useful only if there are important use cases
for it. We find three categories of applications that benefit from
GPM. Transactions in GPU-accelerated persistent KVS and relational
databases benefit from fine-grained logging to PM. Long-running
applications that iteratively invoke GPU kernels, e.g., DNN train-
ing, benefit from faster checkpointing to PM for fault tolerance
and preemption [63]. Finally, GPM enables GPU kernels to embed
the logic to perform in-place byte-grained updates to PM-resident
data structures while ensuring they remain recoverable (consistent)
after a crash. These kernels can then resume, rather than restart
computation upon recovery from a crash. GPU-accelerated BFS
on PM-resident graphs is an example. In the process, we created
a workload suite, named GPMbench, with 9 GPU workloads that
leverage PM’s persistence.

Our third contribution is a GPU (CUDA) library, libGPM, that
enables GPU-optimized parallel logging, checkpointing, and per-
sist operations. The cornerstone of libGPM is the Hierarchical
Coalesced Logging (HCL), a write-ahead (undo) logging facility to
implement transactions. It incorporates two GPU-specific optimiza-
tions. 1 To scale logging for GPUs, where hundreds of thousands
of threads may attempt to insert entries into the log concurrently,
HCL mimics the GPU’s execution hierarchy of threads in the log’s
structure. This allows every GPU thread to insert an entry at specifi-
cally computed indices in the log without locking. 2 HCL leverages
the GPU’s hardware coalescer that merges parallel writes to a cache
line by a set of threads executing in lockstep. It stripes log entries
across cache-line-sized units such that logging by a set of threads
coalesces into a single write to a cache line.

Our key contributions are as follows:

• We created GPM to bring fine-grain persistence to GPUs.
• We created GPMbench workload suite with three classes of
GPU-accelerated applications leveraging PM.

• We created libGPM CUDA library for GPU-optimized logging,
checkpointing, and in-place updates and persists to PM.

• We developed GPU-optimized HCL that speeds up logging
by up to 6.1× over conventional distributed logging.

• Across diverse PM-optimized applications, including persis-
tent KVS to BFS, GPM provides 2-27× performance improve-
ment over their multi-threaded CPU alternatives.

• Over CAP, GPM enables performance improvements of up to
85× by leveraging GPU’s parallelism in persisting data and
by avoiding extraneous data movement.

2 BACKGROUND
Persistent memory: Intel’s Optane Persistent Memory [37] is the
first commercially available NVM technology that enables PM by
allowing load/store accesses and persistence. Optane’s access times
are only 3-10× of DRAM [41] and it is much denser – supporting
up to 3TB on a single socket [77]. A challenge for applications
using PM is ensuring recoverability – maintaining consistency of
PM-resident data structures in the face of a crash [18]. Persistence
alone does not guarantee recoverability. Updates to PM could be
cached in the processors’ volatile caches. Consequently, the order
in which data is written to the cache could be different from the
order it reaches the PM. For example, failure during insertion into
a doubly-linked list could lead to dangling pointers if the pointer
update reaches PM before the data.

A persist operation is needed to guarantee writes to PM are
durable. It is typically implemented using a combination of a flush
and a drain operation. The x86 CPU architectures provide instruc-
tions (e.g., CLFLUSHOPT) that flush a cache line to memory [32]. Al-
ternatively, one can eschew benefits of caching using non-temporal
(nt) stores to bypass caches. Durability, however, is only guaranteed
when the flush (or nt store) is followed by a drain, e.g., SFENCE,
that ensures pending flushes (or nt stores) are complete [82].

CPU’s memory controllers’ (MCs) ADR (Asynchronous DRAM
Refresh) feature helps in hiding higher latency of NVM writes
by buffering writes in a capacitor-backed on-chip Write-Pending
Queue (WPQ). Durability is guaranteed as soon aswrites are buffered

GPM: Leveraging Persistent Memory from a GPU ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

in WPQ. As long as free entries exist in the WPQ the extra latency
of writing to NVM is hidden.
GPU’s execution hierarchy: GPU’s hardware resources are ar-
ranged in a hierarchy to scale to massive parallelism. Streaming
multiprocessors (SMs) are its basic compute blocks. SMs contain
many SIMD units that share an L1 cache and scratchpad. A GPUs
contain tens of SMs. All SMs in a GPU share a L2 cache. GPU pro-
gramming languages also expose an execution hierarchy. In CUDA,
a thread runs on a single lane of a SIMD unit. A set of threads (e.g.,
32), typically executing in lockstep forms a warp. When threads in
a warp execute SIMD loads/stores whose addresses fall on the same
cache line (typically 128 bytes in GPU), the hardware coalesces
them into a single cache access. Many warps make a threadblock
that executes on a SM. Finally, work is dispatched to a GPU at the
granularity of a grid (kernel) having several threadblocks.

Since GPU’s L1 caches are not kept coherent, GPUs provide fence
instructions (e.g., __threadfence) to order memory operations for
ensuring visibility of writes to other threads when desired [59].
Leveraging the execution hierarchy, GPUs added the ability to per-
form synchronization within only a subset of threads. For example,
in CUDA, fence operations support three different scopes – block,
device and system. An operation with a given scope is only guar-
anteed to be visible to threads within the scope of that operation.
For example, a device-scope operation is only guaranteed to affect
threads of a kernel on a GPU. The system scope affects all GPU and
CPU threads, and those in other GPUs for multi-GPU kernels.

3 THE CASE FOR GPM AND ITS DESIGN
Before the advent of NVM technologies, only the filesystems atop
block-storage devices could guarantee persistence. This would typi-
cally involve writing to a file and then issuing an fsync or an msync
syscall for persistence. In contrast, the data on NVM can be mapped
onto an application’s address space. Applications can directly ac-
cess that data using loads and stores and then guarantee persistence
using user-space cache flush and drain when desired. The direct
access to PM created a new class of CPU applications that provide
fine-grain recoverability after a crash or a power failure [19, 64, 93].

Unfortunately, direct access to PM is still beyond the GPU’s reach.
Even on systemswith PM, if a GPU kernel desires to persist results, it
is forced to rely on the CPU to do so. Figure 2(a) depicts how a GPU-
accelerated application can persist results of GPU computation
today, in three broad steps. 1 The GPU driver moves data from
GPU’s device memory to CPU’s DRAM using DMA. 2 The CPU
then copies the data from host DRAM to the NVM. 3 The CPU
finally guarantees the persistence of the data to PM by evicting
contents from caches. We refer to this three step process as CPU-
Assisted Persistence or CAP.

CAP can be realized in multiple ways. One could rely entirely
on the filesystem, which we name CAP-fs. Here, after results are
DMA-ed to DRAM, the CPU writes the results to a PM-resident file,
and then guarantees persistence using fsync(). Alternatively, a PM-
resident file can be memory-mapped onto the CPU’s address space.
The results can be transferred from GPU’s memory to the memory-
mapped file using cudaMemcpy. However, cudaMemcpy would not
move the data directly to the file. Instead, it internally uses a pinned
memory on DRAM as a bounce buffer to copy data without the

possibility of page-faults [68]. It would copy data from GPU to
the buffer and then write it to the file. Finally, CPU threads issue
cache flushes and drains to guarantee persistence. This approach
limits OS overheads but still relies on the CPU for persistence. We
name it CAP-mm. Note that CAP-mm cannot use non-temporal stores
because the CPU is not generating the data to be written. The data
comes to the LLC from the GPU.
Limitations ofCAP: 1 The inability to directly access PM-resident
data structures and persist while computing results (i.e., in-kernel
persistence) precludes programmers fromwriting fine-grain recover-
able GPU kernels. 2 GPUs accelerate applications throughmassive
parallelism. By relying on CPUs to persist results of GPU compu-
tation, many of the benefits of parallelism are lost. 3 The lack of
in-kernel persistence could lead to write-amplification. Sometimes,
only a part of the data that a kernel computes upon would be up-
dated and, thus, persisted (e.g., parts of a KVS). There is no way for
a GPU programmer to efficiently transfer and selectively persist
results to PM at byte granularities.

3.1 GPM’s design philosophy
We therefore envision a system where GPUs can directly write
and persist data to PM with no CPU involvement. We name it
GPU with Persistent Memory (GPM). Figure 2(b) depicts how GPM
works without CPU’s assistance. It uses NVIDIA’s Unified Virtual
Address [67] to map desired parts of PM onto the GPU’s virtual
address space. This allows a GPU kernel to issue loads/stores to
PM-resident data structures. To guarantee persistence from within
a kernel, we use a system-scoped fence instruction that guaran-
tees writes to the system memory are visible to the entire system
(__threadfence_system() in CUDA). Although modern servers’ (e.g.,
Intel Xeons’) memory controllers are ADR-enabled, guaranteeing
visibility of writes is not enough to guarantee persistence due to
DDIO [33, 44]. When DDIO is enabled (default), GPU’s writes to sys-
tem memory are cached in CPU’s LLCs. They do not immediately
proceed to the memory controllers [44]. Thus, GPM selectively turns
off DDIO for GPUs when persistence is desired.

3.2 Understanding benefits of GPM
GPM’s ability to persist data to PM at byte granularities from a GPU
enables fine-grain recoverable kernels. Consider kernels to compute
the prefix-sum of large arrays that form the backbone for many
scientific and sorting applications. They can leverage fine-grain
recoverability to resume instead of restarting computation after a
crash (more in § 4.3). GPM also enhances programmability since
kernels can persist (intermediate) results without coordinating with
the CPU. One may wonder if fine-grain recoverability and ease of
programmability comes at a performance cost over CAP’s coarser-
grain persistence. We analyze this performance question next.
Parallelism in persisting data: The key sale of a GPU is its mas-
sive parallelism that can hide longer latencies. An individual write,
followed by system-scoped fence from a GPU can take longer than
flushing a CPU cache line, followed by a drain [66]. However, a
GPU can use massive parallelism to hide larger latency. To quanti-
tatively demonstrate this, we create a microbenchmark that writes
and persists 1 GB of data from the GPU to PM. On GPM, we vary the
number of GPU threads, writing and persisting data at an 8-byte

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

(b) GPM.

Core
IO

hubLLC

MC NVMC

DRAM NVM

SM

Interconnect

L2$
Bank 0

L2$
Bank N

GDDR GDDR

PCIe

CPU GPU

UVA(a) CAP.

Core
IO

hubLLC

MC NVMC

DRAM NVM

SM

Interconnect

L2$
Bank 0

L2$
Bank N

GDDR GDDR

PCIe

CPU GPU

1

Host Device

2
3

Figure 2: Overviews of CAP and GPM. Dotted lines denote natural cache evictions.

0.32x
0.48x
0.93x
1.72x
3.30x
4.04x
3.97x

G
PU

 T
hr

ea
ds

32
64
128
256
512
1024
2048

1.00x
1.20x
1.34x
1.42x
1.46x
1.47x
1.46x

C
PU

 T
hr

ea
ds

1
2
4
6

16
32
64

(a) CAP. (b) GPM.
Figure 3: Scaling of persistence.

granularity. On CAP-mm, we vary the number of CPU threads to
persist at a coarse granularity. Data is equally partitioned among
the CPU threads, where each persists its portion at once.

Figure 3(a) shows how the microbenchmark speeds up with
increasing number of CPU threads on CAP-mm. It plateaus at 1.47×
over single-threaded persistence. Figure 3(b) shows the same on
GPMwith an increasing number of GPU threads.GPM’s performance
scales to 4× over the single-threaded CAP-mm. While a GPU can
have many more threads, it typically supports a limited number
of concurrent operations on the PCIe [1]. Thus, it does not scale
beyond a point. In general, however, the experiment shows how
GPM can use parallelism to hide the latency of writing and persisting
better than CAP even at a finer grain.
Selective persistence: GPM enables kernels to selectively persist
only as much data, and as and when needed by the program se-
mantics for recoverability. Consider, batched SETs to a PM-resident
KVS containing hundreds of millions of key-value pairs. The SETs
running on the GPU would update only a fraction of those pairs.
However, which pairs would be updated are known only upon com-
puting the indices. Thanks to the fine-grained in-kernel persistence
offered by GPM, a kernel can persist only the updated entries as the
indices are computed.

On CAP however, guaranteeing persistence from within a ker-
nel at a byte granularity is not possible. Consequently, after the
execution of SETs on GPU, the entire KVS (or sections of it) needs
to be transferred to CPU memory and be persisted by the CPU.
While smaller granularities of transfer can moderate extraneous
data movement in a few applications, the overhead of initiating
fine-grain transfers from the CPU remains high enough to nul-
lify any scope for improvement [61]. In general, applications with
input-dependent irregular memory accesses can potentially incur
extraneous data movement [2, 12, 14].
Direct access to PM: An obvious benefit of GPM is its ability to
manipulate PM-resident data structures using direct loads and stores
from the GPU. Hundreds of thousands of GPU threads can perform
loads/stores concurrently to hide the latency of accessing PM. In
contrast, flushing updates to PM via the CPU could have required
thousands of CPU cache line flushes at a 64-byte granularity for
even a few MBs of data. CPU’s limited ability to hide latency adds
to CAP’s overheads.

3.3 Discussions
Alternatives to GPM:We are not the first to foresee the usefulness
of non-volatility to GPU. However, no system today brings the byte-
grained low-latency persistence of PM to the GPU. For example,
NVIDIA’s GPUDirect Storage [89] and its precursor SPIN [10] enable
direct transfer of data between NVMe SSDs and GPUmemory using
DMA. They are applicable to block-storage devices with DMA. They
also do not have a way to explicitly guarantee persistence of data
at byte granularities. Further, GPUfs exposes file-related system
calls (e.g., gread, gwrite) to GPU kernels [87]. GAIA focuses on
consistency protocols for sharing memory-mapped files across the
CPU and the GPU [13]. Both GPUfs and GAIA rely on the CPU and
the OS to persist data to storage, like in CAP. In § 6.1, we further
quantitatively compare against GPUfs.
Impact of upcoming technologies on GPM’s design: Intel re-
cently announced eADR (enhanced ADR) feature in their future
server processors [36]. This hardware feature, along with 2nd gen-
eration Optane NVM will drain the entire contents of CPU caches
to PM on power failures [3, 27, 36, 39]. This feature will obviate
the need to flush cache blocks from CPU’s caches in order to guar-
antee persistence in future processors. However, the fence is still
needed to maintain ordering of writes to PM [39]. On a system with
eADR, GPM would not require to disable DDIO to guarantee per-
sistence of GPU writes. This is because persistence is guaranteed
once the GPU writes reaches CPU’s LLC. This will improve GPM
performance significantly. On the other hand, for CAP, cache blocks
would not need to be explicitly flushed to the PM but fences are still
needed as mentioned earlier. In Section 6, we quantitatively project
performance of GPM and CAP on a future system with eADR and
show GPM remains useful.

Another key emerging technology is Compute Express Link
(CXL) [80] – an open industry standard for interconnect enabling
coherence and memory semantics between the CPU, GPUs and
other memory devices for building disaggregated systems. CXL 2.0
provides support for PM and allows devices to directly (de-)allocate
data on CXL-attached PM. CXL 2.0 provides a Global Persistent
Flush (GPF) instruction that allows PM-aware applications to flush
their data to the CXL-attached PM. However, GPF can only be
issued from the host CPU and it flushes all persistent data from
all device caches. In short, CXL-attached PM alone cannot enable
fine-grain, in-kernel persistence from a GPU. We believe the design
principles of GPM can be extended to CXL-attached PM.

GPM: Leveraging Persistent Memory from a GPU ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 1: GPMbench: Workloads for GPM.
Workload Data structure on PM

Input set; size
Parallel op on PM

T
ra
ns

ac
ti
on

al

Key-value Store
(gpKVS) [43, 79,

102]

Key-value store (25 batches
of 2M SETs and, 100
batches of 2M 95:5
GET:SET; 4.1GB)

Batched parallel
SET and GET
operations

GPU-accelerated
DB (gpDB) [6]

Relational DB table (50M
row insert, 2.5M row

update; 3GB)

Insertion and
updation of

individual rows

It
er
at
iv
e
lo
ng

-r
un

ni
ng

DNN Training
(DNN) [71, 88]

Checkpoint weights, biases
(MNIST dataset [53];

3.2MB)

Calculation of
weights and biases

Computational
Fluid Dynamics

(CFD) [15]

Checkpoint flux,
momentum, etc. (Surface

of missile; 8.9MB)

Compute flux,
momentum at each

point

Black-Scholes
(BLK) [70]

Checkpoint predicted
prices (256M stock options;

4GB)

Calculating price of
individual options

Hotspot
(HS) [15]

Checkpoint temperatures
(16K * 16K power and temp

matrix; 2GB)

Estimating
temperature

N
at
iv
e

Breadth-First
Search (BFS) [25]

Input graph, search
sequence, cost (USA road

network; 1GB)

Calculating cost
from source for

each node

SRAD [25] Diffuse noise per pixel
(128K * 1K; 3GB)

Output image,
diffusion matrix

Prefix Sum
(PS) [70]

Integer arrays (1K * 1M
integers; 4GB)

Partial and final
sum

4 GPMBENCH: USE CASES FOR GPM
NVM technologies enable both persistence and higher capacity.
While it is easy to appreciate that many GPU applications could
leverage larger memory capacity, it is less obvious which ones
would benefit from both GPU’s parallelism and persistence. Thus,
a goal of this work is to identify such use cases.

We identify 9 such GPU-accelerated applications and kernels
(referred to as workloads). These workloads, listed in Table 1, are
chosen from well-known benchmark suites and open-source ap-
plications [6, 15, 25, 70]. We modified them to use PM and named
this suite GPMbench. The workloads are categorized into three
classes based on their use of persistence. The table also lists the
key operations in each workload that leverage both parallelism and
persistence. We report the minimal set of data structures that are
persisted for meaningful recovery after a crash for each workload.
The rest are mapped on the volatile memory for better performance.
We will open-source GPMbench to aid future research in the area.

4.1 Transactional updates to PM
Arguably, a transaction is the most common way for software to
persist data in a recoverable manner, by ensuring the atomicity and
durability of the updates. Logging is the primary mechanism to
achieve these properties of a transaction.

Researchers have explored persistent KVS on PM [43, 55, 79, 103]
and GPU-accelerated KVS [102] in isolation. GPM makes it pos-
sible to leverage them together. A PM-resident KVS can leverage
higher capacity of PM and also utilize persistence for fault toler-
ance [43, 55, 79]. GPUs on the other hand, enable high throughput
for batched SETs and GETs [102]. Transactions are typically used
for recoverability when servicing SETs [38, 79, 100]. We extended a
GPU-accelerated KVS, called MegaKV [102], to execute transactions
of batched SETs and GETs on GPM (gpKVS).

Databases are one of the biggest proponents of transactions. To-
day’s GPU-accelerated databases such asOmniSci [74], Virginian [6],
and HippogriffDB [56] increase throughput of business analystics
queries by executing primarily SELECT queries and perform data-
base searches on GPU. However, they typically avoid executing
transactions that modify the database as there is no efficient way
to directly persist results from the GPU. GPM changes that. We
extended Virginian GPU-accelerated database to implement trans-
actions for batched update and insert queries covering millions of
rows of a PM-resident relational database table (gpDB). In § 5, we de-
tail our CUDA library that implements GPU-optimized write-ahead
logging for creating transactions.

4.2 Iterative long-running kernels
Many long-running GPU-accelerated applications iteratively in-
voke kernels and checkpoint intermediate results for fault tolerance
and for early termination. For example, DNN training often check-
points partially trained weights and biases [63]. Checkpointing
performance assumes heightened importance due to increasing
training time of ever growing DNN models. Besides hardware and
software failures, the use of cheaper preemptible VMs in public
clouds for trainingmakes job interruptions more frequent [65]. Con-
sequently, DNN training needs fine-grain checkpointing to avoid
loss of computing [63]. On GPM, such applications benefit from fast
checkpointing to PM without CPU overheads. In GPMbench, we
use NVIDIA’s cuDNN kernels [71] to train a LeNet model [52] on
the MNIST image data set [53]. After a user-defined number (e.g.,
10) of forward and backward passes, we checkpoint the weights
and biases of the partially trained model on the PM.

Computational fluid dynamics (CFD) kernels are often iteratively
invoked by long-running HPC applications. The CFD kernel, drawn
from the Rodinia suite [15], implements a grid solver for Euler equa-
tion for inviscid and compression flow. The flux, momentum, and
density are computed over many timesteps. We periodically check-
point these to PM. Further, as listed in Table 1, financial applications
like Black-Scholes and simulation applications like Hotspot can
checkpoint results of intermediate computations for fault tolerance.

4.3 Native persistence
GPM enables a new class of GPU kernels that performs fine-grain
in-place updates to PM-resident data structures. The kernel that
performs computation also persists (intermediate) results for recov-
erability. Thus, the persistence is native to it.

Consider a GPU-accelerated breadth-first search [25]. The kernel
persists the node search sequence and cost of traversal for each
node on PM. On a crash, applications using BFS can use the persisted
partial traversals and the search sequence to resume the traversal.
Prefix sum is another kernel that is often used in applications such
as sorting networks and benefits from fine-grained persistence. It
outputs an array on PM, where each element at index ‘j’ contains
the sum of all elements of the input array preceding ‘j’. The kernel
divides the array into subarrays and assigns each subarray to a
threadblock to compute its prefix sum. The partial sums are then
used to compute the global sum. Another application SRAD (Table 1)
benefits from GPM too but we omit details for brevity.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

Table 2: libGPM APIs.
Caller Function

Primitive CPU
gpm_map(path, size, create)
gpm_unmap(path, addr, size)
gpm_persist_begin() / gpm_persist_end()

GPU gpm_persist()

Logging

CPU

gpmlog_create_conv(path, size, n_partition)
gpmlog_create_hcl(path, size, blocks, threads)
gpmlog_open(path) / gpmlog_close(log)

GPU

gpmlog_insert(log, addr, size, partition = -1)
gpmlog_read(log, addr, size, partition = -1)
gpmlog_remove(log, size, partition = -1)
gpmlog_clear(log, partition = -1)

Checkpointing CPU

gpmcp_create(path, size, elements, groups)
gpmcp_open(path) / gpmcp_close(cp)
gpmcp_register(cp, addr, size, group)
gpmcp_checkpoint(cp, group)
gpmcp_restore(cp, group)

We also note that it is important to avoid unnecessary accesses
to PM for better performance since accesses to PM are slow. Hence,
read-only data structures, e.g., input graph in BFS, are read onto
GPU’s device memory (HBM) once, without affecting recoverability.

No single platform suits all types of applications perfectly. Dur-
ing our exploration, we found applications that are less suitable for
GPM. Consider computation of binomial options, a pricing model for
options valuation in financial markets [84]. In its GPU-accelerated
computation, threads in a threadblock coordinate to compute a sin-
gle value which is written by a single thread of a threadblock [48].
That leaves little parallelism to exploit in writing and persisting data
to PM. GPM’s fine-grained persistence brings fine-grained recover-
ability. However, GPM needs parallelism for good performance.

5 LIBGPM: THE LIBRARY ENABLING GPM
Our third key contribution is a CUDA library to aid programmers
in leveraging GPM. We name it libGPM. libGPM abstracts away
complex persistence logic and low-level GPU details from the pro-
grammer while providing GPU- and PM-specific optimizations for
manipulating persistent data structures. Table 2 lists libGPM’s API,
categorized by usage type.

5.1 Persistency primitives
First, libGPM enables allocation/deallocation of persistent memory
using gpm_map and gpm_unmap. Typically, the memory needed
for GPU kernels is statically allocated or deallocated on the CPU,
before and after a kernel launch. Therefore, we do the same for
allocating PM. To allocate memory on PM, a PM-resident file is
memory-mapped using Intel PMDK’s libpmem library [35]. Using
CUDA’s UVA [83], it maps the newly allocated memory to the GPU’s
address space, enabling direct access to PM via loads/stores. Memory
is deallocated by unmapping the address range and the file.

Intel Xeon processors use DDIO [33] to cache writes from GPU in
the LLC. This would break the persistence guarantee on GPM. Our
library provides gpm_persist_begin() and gpm_persist_end(), that
switches DDIO off and on for the GPU by writing to the I/O register
perfctrlsts_0 [22]. The persistence guarantees by the library are
valid only inside the regions marked by these routines, typically
placed before and after a kernel launch.

The gpm_persist() routine ensures prior writes by a GPU thread
are made persistent. It uses the system-scoped fence operation to
wait until data reaches the system memory (i.e., CPU’s memory

Warp log... L31 ... L255L224 ... L511L480 ...

...

Threadblock log Grid log

...

Cache line

Hardware
coalesced

L0

Warp Log

Grid
Threadblock

Warp

... L384 ... L415 ...

Figure 4: The log structure in hierarchical coalesced logging.

...

128 bytes
(Cache line)

L00 L10 ... L310

4 bytes

L01 L11 ... L311

T0 T1 T31

Stripe 0 Stripe 1 Stripe 2

Figure 5: Striping for larger log entry. Lnk denotes kth 4-byte
chunk of a log entry for nth thread in a warp.

controllers) over the PCIe. This is sufficient to guarantee persistence
in GPM implemented on a server with Intel Xeon processors having
ADR-enabled memory controllers.

5.2 Enabling logging to PM from GPUs
Logging is a key functionality that enables atomicity and durablity
for transactional updates [62]. We implement write-ahead undo
logging, where the undo log is persisted before an update. Efficiently
scaling logging to GPU’s hundreds of thousands of threads is a
significant challenge.

Conventional logging on CPU typically uses sequential, lock-
based accesses to a log file, but is impractical for parallel systems
due to serialization overheads. Prior works [9, 11, 94] have proposed
keeping multiple distributed log files (partitions). Insertion of log
entries to different partitions can proceed concurrently, but that to
the same partition is serialized. We improve upon this to avoid all
serialization with two key GPU-specific optimizations as follows.

The execution in a GPU follows a hierarchy of warp, threadblock,
and grid to scale to massive parallelism. We posit that logging on
GPU should mimic the same hierarchy to harness its parallelism.
Next, we observe that the GPU is optimized for SIMD execution.
For example, 32 threads in a warp execute in lockstep, and the
GPU hardware coalesces loads/stores that fall on the same 128-byte,
aligned block into fewer load/store operations. This is critical to
performance; accessing host memory over the PCIe is slow, and
thus, the lesser the number of accesses the better is the performance.
Prior work also demonstrated that PCIe is better utilized when a
warp accesses data at a 128-byte, aligned granularity [1].

Driven by these observations, we design GPU-optimized logging
as Hierarchical Coalesced Logging (HCL). In HCL, each GPU thread
logs the data it is to modify in a data-parallel manner. HCL divides
a PM-resident log file such that each thread has a unique offset to
insert its entry. Consequently, threads can concurrently insert log
entries without locks. We first explain how HCL achieves this by
assuming each thread inserts only a 4-byte entry into the log and
relax this constraint later.

Figure 4 depicts how the GPU’s execution hierarchy is reflected
in the structure of the HCL’s log. It also shows how HCL leverages
hardware coalescingwhile writing log entries from eachwarp. A log

GPM: Leveraging Persistent Memory from a GPU ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

1 __global__ void insert_into_kvs(...) {
2 int hash = getHash(data.key);
3 int loc = getLocation(hash, threadId % THRD_GRP_SZ);
4 if (loc != -1) {
5 log_entry entry;
6 entry.hash = hash;
7 entry.loc = loc;
8 entry.key = kvs[hash].key[loc];
9 entry.value = kvs[hash].value[loc];
10 gpmlog_insert(&entry, sizeof(log_entry));
11 kvs[hash].key[loc] = data.key;
12 kvs[hash].value[loc] = data.value;
13 gpm_persist();
14 }
15 }

(a) Simplified application kernel in CUDA.

1 __global__ void recover(...) {
2 log_entry entry;
3 gpmlog_read(log, &entry, sizeof(log_entry));
4 int hash = entry.hash;
5 int loc = entry.loc;
6 kvs[hash].key[loc] = entry.key;
7 kvs[hash].value[loc] = entry.value;
8 gpm_persist();
9 gpmlog_remove(log, sizeof(log_entry));
10 }

(b) Recovery kernel in CUDA.

Figure 6: Use of logging in gpKVS application.

file is divided into 4-byte chunks with each thread logging 4-bytes
of data into the log at a time. Since the GPU coalesces accesses
to a 128-byte block [30], writes to the log by threads in a warp
becomes a single store. This also improves NVM’s endurance. As
shown in the figure, each warp has a specific cache-line-aligned
offset in the log to insert its entries. Similarly, each threadblock has
a specific region in a log for inserting entries generated by its warps.
In short, the offset of 4-byte chunk within a log where a thread will
insert its entry is uniquely calculated based on its thread, warp, and
threadblock ID. Thus, HCL needs no serialization.

If each thread needs to log more than 4 bytes, HCL stripes log
entries across multiple blocks (Figure 5). Striping keeps the benefits
of HCL and employs a sequence of SIMD stores to insert log entries.
In a SIMD store, each thread in a warp inserts a 4-byte chunk of log
into a stripe for that warp. For failure-atomicity, the entire entry or
none of it should be visible in the log after a crash. Thus, a thread
persists its entry, then increments and persists a tail index of its log.
This tail index acts as the sentinel for the logs used during recovery.

The size of the individual log entry is known statically based on
the data being logged. Therefore, the number of stripes needed is
known apriori. Further, in typical GPU-accelerated software, (likely)
parallel tasks (e.g., thousands of key-value pair insertions in gpKVS)
are launched on to the GPU in batches. The number of parallel
tasks and thus, the number of GPU threads are known at the kernel
launch. Consequently, the number of logging threads and their
offset into HCL’s log is known before the kernel starts execution.

The gpmlog_insert routine can be invoked by a GPU thread
to insert a log entry. The routine calculates the offset in the log
for inserting the entry based on the calling thread’s IDs. It also
correctly persists the log entry by invoking gpm_persist. In short,
the intricacies ofHCL and that of ensuring persistence are abstracted
away from programmers.

HCL is useful for parallelly logging a massive amount of data,
but not for logging small metadata (e.g., the table size). Metadata
is typically logged by one thread in a threadblock or a warp. Thus,
libGPM supports both conventional logging and HCL. The rou-
tine gpmlog_create_conv creates log partitions with conventional
logging and gpmlog_create_hcl creates partitions for HCL. While
inserting an entry into a conventional log, instead of calculating
the log offset, the gpmlog_insert routine automatically appends the
entry to the specified log partition after acquiring a lock. Table 2
lists the full API for logging.
Example use of logging: We demonstrate how libGPM’s logging
APIs can be used for implementing transactions with the help of
code snippets. Figure 6(a) shows a (simplified) CUDA kernel for
recoverable batched insertions in gpKVS. This code is executed by
every thread of the kernel. Before the kernel begins execution, a flag
is set and persisted to indicate that a transaction on the GPU is active
(not shown). gpKVS, which is derived from MegaKV [102], uses an
8-way set-associative structure as the KVS to limit collisions. Each
thread calculates an insertion position (a set) by hashing the key
(line 2). A group of eight threads (THRD_GRP_SZ=8) then coordinates
to select one of the ways in the set and thus, the thread in the group
that will insert the entry (line 3). The selected thread (line 4) creates
a log entry with the current pair in the selected location (line 5-9)
and inserts it into the log (line 10). The insertion routine ensures
persistence of the log entry. The new pair is inserted into the KVS
(line 11-12), then persisted (line 13).
Recovery using logs: On a crash, gpKVS undoes the last batch
of partially completed batched insertions. During the recovery, if
the transaction flag is not set, the crash did not occur during an
active insertion, and logs can be truncated. Otherwise, the logs
are used to undo the partial inserts. Figure 6(b) shows a simplified
CUDA code of this recovery logic. Each GPU thread is responsible
for undoing a single insertion in the failed batched insertion. Each
thread reads one of the key-value pairs from the log (lines 2-3). The
corresponding location in the KVS for a pair is obtained in line 4-5.
That location is updated with the logged entry, i.e., previous value
(line 6-7) and is persisted (line 8). To ensure recoverability during
recovery itself, the log entry is only removed after successfully
updating and persisting the gpKVS (line 9).

5.3 Enabling checkpointing to PM for GPUs
The library enables an application to associate semantically related
data structures with a checkpoint group. It exposes an API (Table 2)
for a programmer to checkpoint and restore data structures in
a given group together. Different groups of data structures are
checkpointed/restored independently.

The gpmcp_create routine creates a checkpoint file and initial-
izes the checkpoint’s internal structures. The checkpoint struc-
tures are 128-byte aligned to maximize bandwidth to the NVM and
across the PCIe. Users must specify the size of the data being check-
pointed, the number of groups, and elements per group for the
checkpoint. Checkpoint files are opened and closed from the CPU
using gpmcp_open, and gpmcp_close. Once a checkpoint is created,
the programmer should register data structures to checkpoint using
gpmcp_register routine. Internally, the library notes the address and
size of the data structure and its group.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

1 void dnn_training(...) {
2 // d_weights is checkpointed in cp_weights
3 gpmcp *cp_weights;
4 if (!RECOVERY_MODE) {
5 cp_weights = gpmcp_create("./file_weights",
6 size_weights, numElements, numGroups);
7 gpm_register(cp_weights, d_weights,
8 size_weights, groupId);
9 }
10 else {
11 cp_weights = gpmcp_open("./file_weights");
12 gpm_register(cp_weights, d_weights,
13 size_weights, groupId);
14 gpmcp_restore(cp_weights, groupId);
15 }
16 while(!training_done) {
17 ... // Calculation
18 gpmcp_checkpoint(cp_weights, groupId);
19 }
20 }

Figure 7: Use of checkpointing for iterative GPU programs.

To initiate checkpointing, gpmcp_checkpoint should be called
with a checkpoint group ID. This routine launches a GPU kernel
that copies registered data structures of the group to PM. The rou-
tine gpmcp_restore copies the data from the PM-resident checkpoint
to the corresponding volatile data structures on the device. The li-
brary internally employs double buffering, where two checkpointed
copies of each data structure are kept on PM. One is the ‘consistent’
copy, while the other is the ‘working’ copy.When a checkpoint is ini-
tiated, data is copied into the working copy. On completion, libGPM
persists the working copy, and atomically marks it as the consistent
copy and vice-versa. The routine internally uses gpm_persist to
persist checkpoints.

Figure 7 shows checkpointing in the DNN training application.
Here, ‘cp_weights’ is a checkpoint for checkpointing DNN’s weights,
while ‘d_weights’ is the volatile data structure containing weights.
A programmer first creates a checkpoint file on PM for the weights
(lines 5-6) and then registers ‘d_weights’ with the checkpoint (lines
7-8), associating it with groupId. On reaching the checkpoint direc-
tive (line 18), ‘d_weights’ is checkpointed as it belongs to groupId.
Recovery: To resume computation, we need to reconstruct the
data structures from the last consistent copy of a persisted check-
point. A programmer first opens an existing checkpoint file (line
11). Upon a crash, the mappings between the checkpointed copies
of data structures and the addresses of those structures in process’s
address space are lost. The library, thus, relies on the order of regis-
tration of data structures to a checkpoint for identifying which data
structure a checkpointed structure should be restored to. Hence,
the programmer should maintain the same order of registering data
structures during restoration (lines 12-13). Then, a programmer can
use gpmcp_restore (line 14) to restore from a checkpoint. However,
pointer-based data structures cannot be checkpointed.

5.4 Enabling native persistence for GPUs
Native persistence workloads do not require any additional support
than what already described. To demonstrate how such applications
leverage libGPM for recoverability, we use the example of comput-
ing the prefix sum of an array. The input array is divided among the
threadblocks, and each thread in the threadblock finds the prefix
sum for a single element within the subarray, called partial sums.

1 __global__ void partial_sums(...) {
2 // Partial sum of last thread in block exists, skip
3 if(pm_p_sums[(blkId + 1) * blkSize - 1] != EMPTY)
4 return;
5 // Compute partial sum for each thread
6 ...
7 // All but last thread in block persist partial sum
8 if(blkThreadId != blkSize - 1) {
9 pm_p_sums[globalThreadId] = thread_p_sum;
10 gpm_persist();
11 }
12 __syncthreads(); // threadblock barrier
13 // Last thread in block persists partial sum
14 if(blkThreadId == blkSize - 1) {
15 pm_p_sums[globalThreadId] = thread_p_sum;
16 gpm_persist();
17 }
18 }

Figure 8: Native persistence in prefix sum kernel.

Table 3: Configuration of the experimental platform.

CPU 4× Intel Xeon Gold 6242 (4 × 16 cores) @ 2.80GHz
GPU NVIDIA Titan RTX (72 SMs, 24 GB GDDR6)
DRAM 768 GB DDR4 @ 2933 MHz
NVM 8 x 128 GB Intel Optane NVDIMM

Interconnect PCIe 3.0 ×16
Software Ubuntu 20.04, CUDA 11, PMDK 1.8, ext4-DAX

Figure 8 shows the CUDA snippet for prefix sum kernel. A per-
sistent copy of each thread’s partial sum is kept in the pm_p_sums
array. At the start, threads check whether PM contains the partial
sum for the last thread in the threadblock (line 3). We shall later see
why. If not, each thread computes its partial sum. All threads except
the last thread in a threadblock store and persist their partial sums
into the pm_p_sums array (lines 9-10). The threads then wait at a
threadblock barrier to ensure all completed their calculations (line
12). Then the last thread in the threadblock updates and persists its
partial sum (lines 15-16).
Recovery: These workloads do not need separate recovery pro-
grams as the recovery logic is embedded within the workloads
themselves. Consider prefix sum, the partial sum of the last thread
in the threadblock is persisted only after all the other threads of the
threadblock have finished persisting their sums. Therefore, after
a crash, if a value is present in the array for the last thread (line
3), then all the threads would have had their values persisted. No
recomputation is needed for that threadblock. Otherwise, recompu-
tation is required for the subarray assigned to that threadblock.
Lines of code changed: As libGPM encapsulate intricacies of
programming GPM, only limited modifications are needed for appli-
cation kernels to leverage GPM. On average, 14 LOC changes were
needed per application. Implementation of UPDATEs required most
changes at 33 LOC, while prefix-sum required only 7 LOC.

6 EVALUATION
We implemented GPM on a system with Intel Xeon processors,
Optane NVM and an NVIDIA GPU. Table 3 details the system.

6.1 Performance
We compare the performance of GPM with CAP-fs and CAP-mm –
today’s options for GPU applications to use PM’s persistence. Recall
both CAP systems rely on the CPU to persist results of GPU compu-
tation. While the former relies on the filesystem for persistence, the

GPM: Leveraging Persistent Memory from a GPU ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
Sp

e
e

d
u

p
 o

ve
r

C
A

P
-f

s

0

2

4

6

8

10

gpKVS gpKVS GPU-DB GPU-DB DNN CFD BLK HS BFS SRAD PS

CAP-mm GPM GPUfs

85

0.1 0.7 0.1

gpKVS gpKVS gpDB gpDB DNN CFD BLK HS BFS SRAD PS
(95:5) (I) (U)

Transactional Checkpointing Native

* * * * * * * *

16 17 11 18

Figure 9: Speedup of CAP-mm, GPM, GPUfs normalized to CAP-
fs. (*) indicates unsupported by GPUfs.

Table 4: Write-amplification (WA) in CAP over GPM.

Transactional Checkpointing Native
gpKVS gpDB (I) gpDB (U) All workloads All workloads

WA 39.38× 1.27× 19.88× 1.00× 1.00×

latter uses user-space cache flush and drain. We use PM-optimized
ext4-DAX filesystem for CAP [75]. CAP-mm uses 2-32 CPU threads
for persisting data. We choose the number of threads that provide
the best performance for a given application. Later in the section,
we also compare with a related academic work, GPUfs [87].

Figure 9 reports the speedups normalized to CAP-fs. There are
up to three bars for each application: CAP-mm, GPM and GPUfs (*
if failed to execute). Applications are divided into clusters by their
type – transactional, long-running iterative kernels (checkpointing),
and native persistence. We evaluate gpKVS with 100% SETs, a.k.a.,
gpKVS and with 95% GETs and 5% SETs, a.k.a., gpKVS (95:5). For gpDB,
we show the numbers for INSERTs (gpDB (I)) and UPDATEs (gpDB (U))
separately as they exhibit distinct behaviors. We observe that CAP-
mm improves performance over CAP-fs by 2× for gpKVS. This shows
the benefits of avoiding OS overheads and that of parallelism in
persisting data from the CPU.

Next, we focus on GPM. We observe that gpKVS speeds up by 7-8×
on GPM over CAP-fs and by 4× over CAP-mm (Figure 9). GPM’s ability
to persist only the updated/new entries in the PM-resident KVS, due
to its in-kernel selective persistence, is key to its performance. The
indices in KVS that would be updated become known only upon
computation in the kernel. These indices are often sparsely spread
over tens of millions of KVS entries. On CAP, the entire KVS or its
pre-defined large chunks have to be transferred to and be persisted
from the CPU due to CAP’s inability to directly persist updates
from a GPU kernel at a byte granularity. Table 4 lists the amount
of extraneous data persisted, i.e., write-amplification (WA), by CAP
over GPM. We observe that CAP persists 39× more data, explaining
GPM’s performance advantage for gpKVS. In gpKVS (95:5), GPM’s
advantages over CAP moderates as expected. GETs run in the same
way on both CAP and GPM as they do not update data. GPM’s
features are useful when data is modified and needs to be persisted
in a recoverable manner. However, GETs are mostly served out of
the GPU’s fast HBMwhile SETs involve persisting data to PMwhich
dominates the runtime. Consequently, even with 5% SETs, GPM
improves throughput.

Next, we observe that INSERTs and UPDATEs get faster by 3.6×
and 2.6× over CAP-mm, respectively, on GPM. While speedup num-
bers for both types of queries are similar, the reasons are different.
For INSERTs, the newly inserted rows are added at the end of the
table. GPM utilizes GPU’s parallelism to write millions of new rows

and persist them in parallel from the kernel. In contrast, CAP de-
signs are unable to leverage GPU’s parallelism as it persists from
the CPU. Further, initializing the DMA engine and transferring
rows from GPU to CPU memory adds overheads.

For UPDATEs, similar to gpKVS, GPM’s ability to selectively persist
only the updated rows from the GPU helps it speed up over alter-
natives. As in gpKVS, the updated rows of the relational table can
be distributed over millions of rows and their locations are known
only upon computation. Thus, the ability to selectively persist data
at byte granularities from the GPU helps avoid write-amplification.
The same is evident from write-amplification reported in Table 4 –
CAP-mm incurs ∼ 20× more data transfer and persisting than GPM.

Beyond performance, GPM provides stronger recoverability due
to fine-grained logging from GPU. On CAP, there was no logging
and thus, it cannot guarantee recoverability if a crash happens
during the process of persisting results to the PM.

Figure 9 next shows speedups for checkpointing long-running
iterative workloads. Checkpointing speeds up on GPM by 11-18×.
Here, the benefits stem from the GPU’s massive parallelism in di-
rectly writing the checkpoint to PM. In contrast, software overheads
of initiating DMA and writing the checkpoint to PM using few CPU
threads throttles the performance on CAP. Note that both CAP and
GPM persist an equal amount of data as the size of checkpoint does
not change (write-amplification=1). Note that speedups in the total
execution time that includes time to both compute and checkpoint
intermediate results depends upon the chosen checkpointing fre-
quency. For example, the DNN training speeds up by 61% and
40%, when we checkpointed weights and biases after every 10th
and 20th pass, respectively. In the specific case of DNN training,
it takes about 8.26 milliseconds to run 10 iterations. Whereas it
takes 0.221 milliseconds to checkpoint and 0.342 milliseconds to
restore from the checkpoint. This demonstrate how GPM can make
checkpointing feasible even at a fine granualrity. In general, vari-
ous workloads’ total execution times improved by 19%-122% over
different checkpointing frequencies.

Finally, native persistence workloads speed up by 5-85×. Most
prominent is BFS. It is an iterative kernel (here, 6000 iterations)
that persists costs of visited nodes and queues after every iteration.
The overheads of initiating DMA at every iteration and persisting
via CPU are significant. On GPM, however, the kernel performing
the search directly writes and persists the results to PM in each
iteration avoiding these overheads.

The coefficient matrix and the partial sums are persisted in SRAD
and PS, respectively. The amount of data persisted remains the same
under CAP and GPM. On GPM, GPU threads persist individual data
items in parallel after individual computations. On CAP, however,
data is transferred to the CPU in bulk after the entire computation
(kernel boundary), for the CPU to persist it. Importantly, due to
fine-grain persists, applications can resume computation where
they left off after a crash on GPM. For example, if a crash occurs
during computation of prefix sum, the entire computation needs to
be restarted on CAP. On GPM, the kernel can resume computation
only for sub-arrays that were yet to be persisted before the crash.
Comparison with GPUfs: We attempt to compare against GPUfs,
which enables GPU kernels to invoke filesystem system calls. It
relies on the CPU and OS to guarantee persistence. Most workloads

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

1
2
4
8

16
32
64

gpKVS gpKVS gpDB gpDB DNN CFD BLK HS BFS SRAD PSSp
e

e
d

u
p

 o
ve

r
C

A
P

-f
s GPM-NDP GPM GPM-eADR CAP-eADR

(I) (U)
Transactional Checkpointing Native

(95:5)

142110

Figure 10: Understanding GPM’s performance and eADR.

fail to run on GPUfs as it was never designed for fine-grain persis-
tence. GPUfs requires all threads in a threadblock to invoke GPUfs’s
API – these calls are ordered by barriers. Applications deadlock if
individual threads try to read/write data. Workloads that persist
entire data structures at a coarse-grain, e.g., checkpointing ones and
SRAD, run on GPUfs. However, overheads of repeatedly invoking
system calls from the GPU and filesystem slows down applications.
As GPUfs only supports file sizes upto 2GB, BLK and HS fail.
Benefits over CPU-only persistence:One can perform both com-
putation and leverage PM using only the CPU, as it is typically done
today. However, as seen in Figure 1, GPM, aided by libGPM, can
speed up applications by 3-27× over their CPU-only counterparts
while ensuring the same recoverabilty guarantees. However, there
is no meaningful ‘CPU’ counterparts to checkpointing workloads
beyond CAP since data being checkpointed is generated on the GPU.
For databases, their performance depends largely on the specific
query engine. For a fair comparison, we converted the CUDA imple-
mentation of gpDB to OpenMP implementation that can leverage
many core CPUs. We observed that GPM sped up gpDB (I) and gpDB
(U) by 3.1× and 6.9×, respectively, while maintaining the same
recoveribilty properties through write-ahead logging.
Analyzing GPM’s performance and eADR: A key aspect of GPM
is its ability to guarantee persistence from within a GPU kernel,
beyond performing load/store to PM from the GPU. To tease out the
importance of this aspect in GPM’s performance, we created GPM-
NDP. We force kernels to rely on the CPU to guarantee persistence
as in CAP-mm (i.e., No Direct Persistence) but they can still directly
load/store to PM as in GPM. We also keep DDIO enabled since it is
only needed when guaranteeing persistence from the GPU.

Figure 10 shows speedup over CAP-fs, as before (note log scale
in y-axis). We observe that GPM speeds up over GPM-NDP by up to
6×. This demonstrates that guaranteeing persistence from the GPU
helps performance beside enabling fine-grain recoverabilty for GPU
kernels. We observe most workloads, particularly checkpointing,
slowed down significantlywithGPM-NDP. Guaranteeing persistence
for the entire checkpoint from the CPU adds significant serialization
as CPU threads have to flush individual cache lines (64 bytes). The
difference is slightly lesser for gpKVS (still 40 - 60%) since it uses
more synchronizations in the kernel. That limits the amount of
parallelism it can exploit in persisting updates.

We now investigate how eADR will impact both GPM and CAP.
In GPM-eADR, we project GPM’s performance with eADR by not
disabling DDIO. GPM-eADR improves performance over GPM by up
to 13× (Figure 10). However, improvements are not even across
all applications. The applications with many ordering points due
to frequent persists, e.g., those due to logging, benefit the most
since fences complete as soon as data reaches LLC. In contrast,

0

2

4

6

gpKVS gpDB (U)

Sp
e

e
d

u
p

(a) Speedup due to HCL.

0

1000

2000

3000

0 10000 20000 30000 40000 50000

La
te

n
cy

 (
m

s)

Number of GPU threads

Conventional HCL

(b) Latency for microbenchmark.

Figure 11: HCL’s performance against conventional logging.

0

5

10

15

gpKVS gDB (I) gDB (U) DNN CFD BLK HS BFS SRAD PS

P
C

Ie
 B

W
 (

in
 G

B
P

S)
P

C
Ie

 B
W

 (
in

 G
B

P
S)

gpKVS gpDB gpDB DNN CFD BLK HS BFS SRAD PS
(I) (U)

1.5 2.6
0.2 0.7

Max PCIe BW

Figure 12: PCIe write bandwidth with GPM.

checkpointing required a single persist after writing the entire
checkpoint and, thus, is mostly agnostic to eADR.

We also created CAP-eADR, a version of CAP-mm but without
cache flushes on the CPU as they are unnecessary with eADR. The
difference between GPM-eADR and CAP-eADR shows the likely im-
pact on GPM’s relative advantage over CAP in future systems. Al-
though eADR eliminates the need for flushing data from the CPU
under CAP, it provides limited benefits to CAP as most of the time
is spent in transferring data from GPU to CPU and not in persist-
ing data. In Figure 10, we observe that GPM-eADR is 24× faster
than CAP-eADR, on average. This is because GPM’s advantages of
leveraging GPU’s parallelism in writing to PM and avoiding write-
amplification are unaffected by eADR. At the same time, the fact
that eADR allows GPM to guarantee persistence even in the presence
of DDIO brings significant performance uplifts.
Importance ofHCL in logging: Figure 11(a) shows speedup due to
HCL over conventional distributed logging for transactional work-
loads. gpKVS speeds up by 3.3×with HCL over conventional logging.
gpDB (U) that logs old values for every updated record witnesses
a 6.1× speedup. We skip INSERTs since it only logs the table size.
GPU’s hardware coalescing of writes to logs and massively parallel
log entry insertions propel performance under HCL. For gpKVS, one
in eight threads inserts a key-value pair and, thus, logs. Thus, it
does not exploit HCL’s parallelism like gpDB (U) does. We further
studied scalability of HCL with a microbenchmark. Figure 11(b)
shows how HCL scales compared to conventional distributed log-
ging. The x-axis and y-axis show the number of concurrent logging
threads and the latency, respectively. HCL’s logging latency remains
stable with thread count but that for conventional logging jumps.
On average, HCL lowers latency by ∼ 3.6×.
Write bandwidth to PM: Only the data structures required for
recovery reside on the PM (Table 1). The rest are placed on the
GPU’s volatile memory. Therefore, only accesses to the PM cross
the PCIe. The writes to the PM captures the bandwidth utilized for
data updates and recoverability (e.g., logging).

Figure 12 shows the measured write bandwidth from GPU to PM
on the PCIe. We find that the bandwidth utilization is well below
the achievable total PCIe 3.0 bandwidth (∼ 13 GBps) for transac-
tional workloads. Upon analysis, we find that these workloads are

GPM: Leveraging Persistent Memory from a GPU ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Table 5: Restoration latency (RL) in GPM.

Transactional Checkpointing
gpKVS gpDB (I) gpDB (U) DNN CFD BLK HS

RL 18.96% 0.01% 10.43% 0.12% 0.30% 0.80% 1.65%

bottlenecked at PM. Optane enables maximum bandwidth and low-
est latency when accesses are sequential and aligned at 256-byte
boundaries [27, 99, 103]. This is because it internally buffers writes
at 256 bytes to hide latency [95, 99]. Using a microbenchmark, we
observed that one can achieve 12.5 GBps bandwidth with sequen-
tial accesses aligned at 256 bytes. However, if the accesses are not
256-bytes-aligned then it drops to 3.13 GBps. Further, if accesses
are to random addresses then bandwidth drops to 0.72 GBps. For
gpDB (U), gpKVS, gpKVS (95:5), updates to the tables/KVS are sparse
and unaligned that lead to low bandwidth at PM. That then show
up as low PCIe bandwidth utilization. For gpDB (I), the accesses
are unaligned but sequential as new rows are contiguous, and thus,
enable better bandwidth.

The checkpointing workloads achieve better PCIe bandwidth us-
age because streaming writes to contiguous and aligned checkpoint
memory fully leverages Optane’s bandwidth. In BFS, writes to PM
happen at random addresses based on the nodes being updated. In
contrast, while persisting the co-efficient matrix in SRAD, writes to
PM are streaming but not necessarily aligned. In short, we find that
access patterns to PM and their interactions with idiosyncrasies of
the Optane are key determinants to bandwidth utilization. Note
that bandwidth presented is not the total bandwidth utilization but
only for writes to the PM. For example, total bandwidth utilization
to GPU’s HBM for applications like BLK is ∼ 250GBps.

6.2 Recovery analysis
We stress-tested recoverability for all workloads under GPM by
injecting crashes at random points during kernel execution using
NVIDIA’s fault injection tool NVBitFI [28, 72]. It is a binary instru-
mentation tool that automatically injects fault at a given frequency.
We successfully recovered the state of every program after crashes.

To measure recovery performance, we define restoration latency
as the latency to execute the recovery kernel to recover after a
crash. Table 5 shows the restoration latency as the percentage of a
workload’s operation time. The operation time includes kernel(s)
execution time and time for recurring operations like loading data
but excludes one-time setup cost. We skip native workloads since
they do not have separate recovery kernels as their recovery logic
is embedded in the application itself.

For transactional workloads, the restoration latency is the time to
undo updates. We measure the worst-case cost latency by crashing
just before transactions commit. The restoration latency is at most
19% of computation time and is often much lesser. gpDB (I) restores
quickly since recovery only involves restoring table metadata. For
checkpointing, the restoration latency is the time to copy data from
the last checkpoint to the corresponding in-memory data structures.
Table 5 shows that these workloads are quick to restore thanks to
direct access to PM.

7 RELATEDWORK
The advent of PM inspired significant research in exploring its
use across many domains such as key-value stores [43, 47, 54, 55],
databases [5, 16, 92], and filesystems [4, 42, 98]. Numerous inter-
faces have been proposed to enable programmers harness capabili-
ties of PM. Mnemosyne [93] and NV-Heaps [19] explored techniques
for transactional interactions with PM. Intel offers PMDK [35], a
library to leverage Optane NVM. Prior works explored techniques
to lower overheads of persistence, either through software [29, 31,
49, 50, 85, 97] or hardware [51, 58, 64]. While they provide useful
insights, they are not directly applicable in the context of GPUs.

Logging is a key enabler of transactions. Prior works [11, 21, 24,
40, 94] have explored ways to reduce logging overheads. Check-
pointing is often used for fault tolerance. Previous works for check-
pointing on NVM [20, 23, 46] focused on minimizing the check-
pointing latency and bandwidth. However, we explored GPUs and
studies on CPUs do not directly apply.

Prior works proposed different ways and interfaces to directly
transfer data between SSDs and GPU memory [8, 86, 90, 101]. How-
ever, none of these works concern themselves with byte-grained
direct access and persistence to PM. A recent work [57] adapts
existing CPU persistency models [76] for GPUs. They propose to
completely replace GPU memory with NVM which seems impracti-
cal. DRAGON [60] exploits NVM’s capacity (and not persistence) for
GPU through Unified Memory [81]. Chen et al. [17] addresses the
challenge of NVM’s limited write bandwidth with new hardware.
HeteroCheckpoint [45] leverages PM for checkpointing GPU pro-
grams and addresses issues of low NVM bandwidth and high persist
latencies. However, it relies CPU for checkpointing. CheckFreq [63]
proposes faster checkpointing of DNN state from the GPU. GPM
goes much beyond checkpointing by enabling generic fine-grain
in-kernel persistence. Researchers have also proposed adding new
instruction in GPU hardware for supporting PM [7, 26]. In contrast,
GPM needs no hardware modifications.

8 CONCLUSION
GPU is an important computing platform but is unable to harness
the fine-grain persistence of PM today. We address this shortcoming
by creating GPM that enables in-kernel fine-grain persistence for
GPU-accelerated applications. Toward this, we explore three key
challenges in bringing benefits of PM to GPU programs. We glue
together a GPU and NVM to enable GPU kernels directly access PM.
We then contribute in two ways to create an ecosystem around the
systems. We create a workload suite of GPU programs that benefits
from PM. We create a GPU library for easily leveraging PM by
providing support for logging, checkpointing, and basic primitives.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Samira Khan
for their constructive feedback. We thank Ashish Panwar, Vinod
Ganapathy, R. Govindarajan, and Mainak Chaudhuri for their feed-
back on an earlier draft of this work. This work is supported by
research grants from VMware Inc and Intel Labs. Arkaprava is
supported by a Young Investigator Fellowship by Pratiksha Trust,
Bangalore.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

REFERENCES
[1] 2020. EMOGI: Efficient Memory-Access for out-of-Memory Graph-Traversal

in GPUs. Proc. VLDB Endow. 2 (Oct. 2020), 114–127. https://doi.org/10.14778/
3425879.3425883

[2] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. 2019. Fast Key-
Value Stores: An Idea Whose Time Has Come and Gone. In Proceedings of the
Workshop on Hot Topics in Operating Systems (Bertinoro, Italy) (HotOS ’19).
Association for Computing Machinery, New York, NY, USA, 113–119. https:
//doi.org/10.1145/3317550.3321434

[3] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James Tuck, and
Yan Solihin. 2021. BBB: Simplifying Persistent Programming using Battery-
Backed Buffers. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 111–124. https://doi.org/10.1109/HPCA51647.
2021.00019

[4] Thomas E. Anderson, Marco Canini, Jongyul Kim, Dejan Kostić, Youngjin Kwon,
Simon Peter, Waleed Reda, Henry N. Schuh, and Emmett Witchel. 2019. Assise:
Performance and Availability via NVM Colocation in a Distributed File System.
arXiv:1910.05106 [cs.DC]

[5] Joy Arulraj and Andrew Pavlo. 2017. How to Build a Non-Volatile Mem-
ory Database Management System. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD
’17). Association for Computing Machinery, New York, NY, USA, 1753–1758.
https://doi.org/10.1145/3035918.3054780

[6] Peter Bakkum and Srimat Chakradhar. 2012. Efficient Data Management for
GPU Databases. http://pbbakkum.com/virginian/paper.pdf.

[7] Arkaprava Basu, Dibakar Gope, Sooraj Puthoor, and Mitesh Meswani. 2019.
Scoped persistence barriers for non-volatile memories. https://patents.google.
com/patent/US10324650B2/en.

[8] Stephen Bates. November 2016. Project Donard. https://github.com/
sbates130272/donard.

[9] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski,
James Nunez, Milo Polte, and Meghan Wingate. 2009. PLFS: A Checkpoint
Filesystem for Parallel Applications. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (Portland, Oregon)
(SC ’09). Association for Computing Machinery, New York, NY, USA, Article 21,
12 pages. https://doi.org/10.1145/1654059.1654081

[10] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and Mark Silberstein. 2017.
SPIN: Seamless Operating System Integration of Peer-to-Peer DMA Between
SSDs and GPUs. In 2017 USENIX Annual Technical Conference (USENIX ATC
17). USENIX Association, Santa Clara, CA, 167–179. https://www.usenix.org/
conference/atc17/technical-sessions/presentation/bergman

[11] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements, M. Frans Kaashoek, and
Nickolai Zeldovich. 2017. Scaling a File System to Many Cores Using an Opera-
tion Log. In Proceedings of the 26th Symposium on Operating Systems Principles
(Shanghai, China) (SOSP ’17). Association for Computing Machinery, New York,
NY, USA, 69–86. https://doi.org/10.1145/3132747.3132779

[12] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon
Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna T.
Malladi, Hongzhong Zheng, and Onur Mutlu. 2019. CoNDA: Efficient Cache
Coherence Support for near-Data Accelerators. In Proceedings of the 46th In-
ternational Symposium on Computer Architecture (Phoenix, Arizona) (ISCA
’19). Association for Computing Machinery, New York, NY, USA, 629–642.
https://doi.org/10.1145/3307650.3322266

[13] Tanya Brokhman, Pavel Lifshits, and Mark Silberstein. 2019. GAIA: An OS Page
Cache for Heterogeneous Systems. In Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX ATC ’19).
USENIX Association, USA, 661–674.

[14] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf,
Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking Software Runtimes for
Disaggregated Memory. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(Virtual, USA) (ASPLOS 2021). Association for Computing Machinery, New York,
NY, USA, 79–92. https://doi.org/10.1145/3445814.3446713

[15] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Hetero-
geneous Computing. In Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC) (IISWC ’09). IEEE Computer Society, USA,
44–54. https://doi.org/10.1109/IISWC.2009.5306797

[16] Shimin Chen, Phillip B. Gibbons, and Suman Nath. 2011. Rethinking Database
Algorithms for Phase Change Memory. In CIDR’11: 5th Biennial Conference on
Innovative Data Systems Research (cidr’11: 5th biennial conference on innova-
tive data systems research ed.). https://www.microsoft.com/en-us/research/
publication/rethinking-database-algorithms-for-phase-change-memory/

[17] Sui Chen, Faen Zhang, Lei Liu, and Lu Peng. 2019. Efficient GPU NVRAM
Persistence with Helper Warps. In Proceedings of the 56th Annual Design Au-
tomation Conference 2019 (Las Vegas, NV, USA) (DAC ’19). Association for
Computing Machinery, New York, NY, USA, Article 155, 6 pages. https:
//doi.org/10.1145/3316781.3317810

[18] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2013. Optimistic Crash Consistency.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (Farminton, Pennsylvania) (SOSP ’13). Association for Computing
Machinery, New York, NY, USA, 228–243. https://doi.org/10.1145/2517349.
2522726

[19] Joel Coburn, AdrianM. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with next-Generation, Non-Volatile Memories. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (Newport Beach, California, USA) (ASPLOS
XVI). Association for Computing Machinery, New York, NY, USA, 105–118.
https://doi.org/10.1145/1950365.1950380

[20] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P. Jouppi. 2011.
Hybrid Checkpointing Using Emerging Nonvolatile Memories for Future Exas-
cale Systems. ACM Trans. Archit. Code Optim. 8, 2, Article 6 (June 2011), 29 pages.
https://doi.org/10.1145/1970386.1970387

[21] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and YunWang. 2011. High Performance
Database Logging Using Storage Class Memory. In Proceedings of the 2011 IEEE
27th International Conference on Data Engineering (ICDE ’11). IEEE Computer
Society, USA, 1221–1231. https://doi.org/10.1109/ICDE.2011.5767918

[22] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. 2020.
Reexamining Direct Cache Access to Optimize I/O Intensive Applications for
Multi-hundred-gigabit Networks. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, 673–689. https://www.usenix.org/
conference/atc20/presentation/farshin

[23] Shen Gao, Bingsheng He, and Jianliang Xu. 2015. Real-Time In-Memory Check-
pointing for Future Hybrid Memory Systems. In Proceedings of the 29th ACM on
International Conference on Supercomputing (Newport Beach, California, USA)
(ICS ’15). Association for Computing Machinery, New York, NY, USA, 263–272.
https://doi.org/10.1145/2751205.2751212

[24] Shen Gao, Jianliang Xu, Theo Härder, Bingsheng He, Byron Choi, and Haibo Hu.
2015. PCMLogging: Optimizing Transaction Logging and Recovery Performance
with PCM. IEEE Transactions on Knowledge and Data Engineering 27, 12 (2015),
3332–3346.

[25] Juan Gómez-Luna, Izzat El Hajj, Victor Chang, Li-Wen Garcia-Flores, Simon
Garcia de Gonzalo, Thomas Jablin, Antonio J Pena, and Wen-mei Hwu. 2017.
Chai: Collaborative Heterogeneous Applications for Integrated-architectures. In
Performance Analysis of Systems and Software (ISPASS), 2017 IEEE International
Symposium on. IEEE.

[26] Dibakar Gope, Arkaprava Basu, Sooraj Puthoor, and Mitesh Meswani. 2018. A
Case for Scoped Persist Barriers in GPUs. (2018).

[27] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understanding the
Idiosyncrasies of Real Persistent Memory. Proc. VLDB Endow. 14, 4 (Dec. 2020),
626–639. https://doi.org/10.14778/3436905.3436921

[28] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W. Keckler,
and Joel Emer. 2017. SASSIFI: An architecture-level fault injection tool for
GPU application resilience evaluation. In 2017 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). 249–258. https:
//doi.org/10.1109/ISPASS.2017.7975296

[29] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally
Ordered Durable Datastructures for Persistent Memory. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
’20). Association for Computing Machinery, New York, NY, USA, 775–788.
https://doi.org/10.1145/3373376.3378472

[30] Mark Harris. 2013. How to Access Global Memory Efficiently in CUDA C/C++
Kernels. NVIDIA Developer Blog (Jan 2013). https://tinyurl.com/global-mem-
cuda.

[31] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. 2017. NVthreads: Practical Persistence for Multi-Threaded
Applications. In Proceedings of the Twelfth European Conference on Computer
Systems (Belgrade, Serbia) (EuroSys ’17). Association for Computing Machinery,
New York, NY, USA, 468–482. https://doi.org/10.1145/3064176.3064204

[32] Chunyang Hui. 2019. Enabling Persistent Memory in the Storage Performance
Development Kit (SPDK). (2019). https://tinyurl.com/intel-spdk.

[33] Intel. 2012. Intel Data Direct I/O Technology. https://www.intel.in/content/
www/in/en/io/data-direct-i-o-technology.html.

[34] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual.
(September 2016).

[35] Intel. 2017. Persistent Memory Development Kit. https://pmem.io/pmdk/.
[36] Intel. 2021. eADR: New Opportunities for Persistent Memory Applications.

(2021). https://software.intel.com/content/www/us/en/develop/articles/eadr-
new-opportunities-for-persistent-memory-applications.html.

[37] Intel. 2021. Intel Optane PersistentMemory. https://www.intel.in/content/www/
in/en/architecture-and-technology/optane-dc-persistent-memory.html. Ac-
cessed: 2021-05-05.

[38] Intel. 2021. Intel PmemKV. https://github.com/pmem/pmemkv.

https://doi.org/10.14778/3425879.3425883
https://doi.org/10.14778/3425879.3425883
https://doi.org/10.1145/3317550.3321434
https://doi.org/10.1145/3317550.3321434
https://doi.org/10.1109/HPCA51647.2021.00019
https://doi.org/10.1109/HPCA51647.2021.00019
https://arxiv.org/abs/1910.05106
https://doi.org/10.1145/3035918.3054780
http://pbbakkum.com/virginian/paper.pdf
https://patents.google.com/patent/US10324650B2/en
https://patents.google.com/patent/US10324650B2/en
https://github.com/sbates130272/donard
https://github.com/sbates130272/donard
https://doi.org/10.1145/1654059.1654081
https://www.usenix.org/conference/atc17/technical-sessions/presentation/bergman
https://www.usenix.org/conference/atc17/technical-sessions/presentation/bergman
https://doi.org/10.1145/3132747.3132779
https://doi.org/10.1145/3307650.3322266
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1109/IISWC.2009.5306797
https://www.microsoft.com/en-us/research/publication/rethinking-database-algorithms-for-phase-change-memory/
https://www.microsoft.com/en-us/research/publication/rethinking-database-algorithms-for-phase-change-memory/
https://doi.org/10.1145/3316781.3317810
https://doi.org/10.1145/3316781.3317810
https://doi.org/10.1145/2517349.2522726
https://doi.org/10.1145/2517349.2522726
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1970386.1970387
https://doi.org/10.1109/ICDE.2011.5767918
https://www.usenix.org/conference/atc20/presentation/farshin
https://www.usenix.org/conference/atc20/presentation/farshin
https://doi.org/10.1145/2751205.2751212
https://doi.org/10.14778/3436905.3436921
https://doi.org/10.1109/ISPASS.2017.7975296
https://doi.org/10.1109/ISPASS.2017.7975296
https://doi.org/10.1145/3373376.3378472
https://tinyurl.com/global-mem-cuda
https://tinyurl.com/global-mem-cuda
https://doi.org/10.1145/3064176.3064204
https://tinyurl.com/intel-spdk
https://www.intel.in/content/www/in/en/io/data-direct-i-o-technology.html
https://www.intel.in/content/www/in/en/io/data-direct-i-o-technology.html
https://pmem.io/pmdk/
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.in/content/www/in/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.in/content/www/in/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/pmem/pmemkv

GPM: Leveraging Persistent Memory from a GPU ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

[39] Intel. September 2021. Persistent Memory Learn More Series Part
2. https://www.intel.com/content/www/us/en/developer/articles/training/
pmem-learn-more-series-part-2.html.

[40] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. SIGARCH Comput. Archit.
News 44, 2 (March 2016), 427–442. https://doi.org/10.1145/2980024.2872410

[41] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. http://arxiv.org/abs/1903.05714.

[42] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh
Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing Software Overhead
in File Systems for Persistent Memory. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP
’19). Association for Computing Machinery, New York, NY, USA, 494–508.
https://doi.org/10.1145/3341301.3359631

[43] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young-Ri
Choi. 2019. SLM-DB: Single-Level Key-Value Store with Persistent Memory.
In Proceedings of the 17th USENIX Conference on File and Storage Technologies
(Boston, MA, USA) (FAST’19). USENIX Association, USA, 191–204.

[44] Anuj Kalia, David Andersen, and Michael Kaminsky. 2020. Challenges and
Solutions for Fast Remote Persistent Memory Access. In Proceedings of the
11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20).
Association for Computing Machinery, New York, NY, USA, 105–119. https:
//doi.org/10.1145/3419111.3421294

[45] Sudarsun Kannan, Naila Farooqui, Ada Gavrilovska, and Karsten Schwan. 2014.
HeteroCheckpoint: Efficient Checkpointing for Accelerator-Based Systems. In
Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN ’14). IEEE Computer Society, USA, 738–743.
https://doi.org/10.1109/DSN.2014.76

[46] Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan, and Dejan Milojicic. 2013.
Optimizing Checkpoints Using NVM as Virtual Memory. In Proceedings of the
2013 IEEE 27th International Symposium on Parallel and Distributed Processing
(IPDPS ’13). IEEE Computer Society, USA, 29–40. https://doi.org/10.1109/IPDPS.
2013.69

[47] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaibhav Gogte,
and Ronald Dreslinski. 2021. Improving Performance of Flash Based Key-Value
Stores Using Storage Class Memory as a Volatile Memory Extension. In 2021
USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association,
821–837. https://www.usenix.org/conference/atc21/presentation/kassa

[48] Craig Kolb and Matt Pharr. 2005. Binomial Option Pricing Model.
https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-
numerical-algorithms/chapter-45-options-pricing-gpu. Accessed: 2021-05-06.

[49] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. 2017. Language-Level Persis-
tency. In Proceedings of the 44th Annual International Symposium on Computer
Architecture (Toronto, ON, Canada) (ISCA ’17). Association for Computing Ma-
chinery, New York, NY, USA, 481–493. https://doi.org/10.1145/3079856.3080229

[50] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.
2016. High-Performance Transactions for Persistent Memories. In Proceed-
ings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (Atlanta, Georgia, USA) (ASP-
LOS ’16). Association for Computing Machinery, New York, NY, USA, 399–411.
https://doi.org/10.1145/2872362.2872381

[51] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M. Chen, and Thomas F. Wenisch. 2016. Delegated Persist Ordering.
In The 49th Annual IEEE/ACM International Symposium on Microarchitecture
(Taipei, Taiwan) (MICRO-49). IEEE Press, Article 58, 13 pages.

[52] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[53] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. (2010). http://yann.lecun.com/exdb/mnist/

[54] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vi-
jay Chidambaram. 2019. Recipe: Converting Concurrent DRAM Indexes to
Persistent-Memory Indexes. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). As-
sociation for Computing Machinery, New York, NY, USA, 462–477. https:
//doi.org/10.1145/3341301.3359635

[55] Baptiste Lepers, Oana Balmau, Karan Gupta, andWilly Zwaenepoel. 2019. KVell:
The Design and Implementation of a Fast Persistent Key-Value Store. In Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles (Huntsville,
Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 447–461. https://doi.org/10.1145/3341301.3359628

[56] J. Li, Hung-Wei Tseng, Chunbin Lin, Y. Papakonstantinou, and S. Swanson. 2016.
HippogriffDB: Balancing I/O and GPU Bandwidth in Big Data Analytics. Proc.
VLDB Endow. 9 (2016), 1647–1658.

[57] Zhen Lin,MohammadAlshboul, Yan Solihin, andHuiyang Zhou. 2019. Exploring
Memory Persistency Models for GPUs. In In Proc of International Conference on

Parallel Architectures and Compilation Techniques (PACT-28).
[58] Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko, Aasheesh Kolli, and

Samira Khan. 2019. Janus: Optimizing Memory and Storage Support for Non-
Volatile Memory Systems. In Proceedings of the 46th International Symposium on
Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association for Computing
Machinery, New York, NY, USA, 143–156. https://doi.org/10.1145/3307650.
3322206

[59] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A Formal
Analysis of the NVIDIA PTX Memory Consistency Model. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Providence, RI, USA) (ASPLOS
’19). Association for Computing Machinery, New York, NY, USA, 257–270.
https://doi.org/10.1145/3297858.3304043

[60] Pak Markthub, Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Satoshi
Matsuoka. 2018. DRAGON: Breaking GPU Memory Capacity Limits with Direct
NVM Access. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (Dallas, Texas) (SC ’18). IEEE
Press, Article 32, 13 pages.

[61] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun Xiong, Eiman
Ebrahimi, Deming Chen, and Wen mei Hwu. 2021. Large Graph Convolu-
tional Network Training with GPU-Oriented Data Communication Architecture.
arXiv:2103.03330 [cs.LG]

[62] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
1992. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks UsingWrite-Ahead Logging. ACMTrans. Database
Syst. 17, 1 (March 1992), 94–162. https://doi.org/10.1145/128765.128770

[63] JayashreeMohan, Amar Phanishayee, and Vijay Chidambaram. 2021. CheckFreq:
Frequent, Fine-Grained DNN Checkpointing. In 19th USENIX Conference on
File and Storage Technologies (FAST 21). USENIX Association, 203–216. https:
//www.usenix.org/conference/fast21/presentation/mohan

[64] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. wift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory Use with WHIS-
PER. In Proceedings of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Xiaposan,
China) (ASPLOS ’17). Association for Computing Machinery, New York, NY,
USA, 135–148. https://doi.org/10.1145/3037697.3037730

[65] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,
and Matei Zaharia. 2020. Analysis and Exploitation of Dynamic Pricing in the
Public Cloud for ML Training. (2020).

[66] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon Peter,
and Baris Kasikci. 2020. AGAMOTTO:HowPersistent is your PersistentMemory
Application?. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIXAssociation, 1047–1064. https://www.usenix.
org/conference/osdi20/presentation/neal

[67] NVIDIA. 2011. Peer-to-Peer & Unified Virtual Addressing. https://developer.
download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf.

[68] NVIDIA. 2012. How to Optimize Data Transfers in CUDA C/C++. https:
//developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/.

[69] NVIDIA. 2019. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/. Accessed: 2019-11-15.

[70] NVIDIA. 2019. CUDA Software Development Kit Samples. https://docs.nvidia.
com/cuda/cuda-samples/index.html.

[71] NVIDIA. 2021. NVIDIA cuDNN. (2021). https://developer.nvidia.com/cudnn.
[72] NVIDIA. April 2020. NVBitFI. https://github.com/NVlabs/nvbitfi.
[73] Nvidia. November 2021. cuDNN Archive. https://developer.nvidia.com/rdp/

cudnn-archive.
[74] OmniSci. 2017. OmniSci DB. https://www.omnisci.com/.
[75] Linux Kernel Organization. 2021. DAX:Direct Access for files. https://www.

kernel.org/doc/Documentation/filesystems/dax.txt.
[76] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Persis-

tency. In Proceeding of the 41st Annual International Symposium on Computer
Architecture (Minneapolis, Minnesota, USA) (ISCA ’14). IEEE Press, 265–276.

[77] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. 2019. System Evaluation
of the Intel Optane Byte-Addressable NVM. In Proceedings of the International
Symposium on Memory Systems (Washington, District of Columbia) (MEMSYS
’19). Association for Computing Machinery, New York, NY, USA, 304–315. https:
//doi.org/10.1145/3357526.3357568

[78] PMEM.io. August 2021. IPMCTL User Guide. https://docs.pmem.io/ipmctl-user-
guide/.

[79] RocksDB. 2021. RocksDB. (2021). https://rocksdb.org/.
[80] Andy Rudoff. 2021. Persistent Memory on CXL. https://www.snia.org/

educational-library/persistent-memory-cxl-2021.
[81] Nikolay Sakharnykh. 2016. Beyond GPU Memory Limits with Unified Memory

on Pascal. NVIDIA Developer Blog (December 2016). https://tinyurl.com/pascal-
um.

[82] Steve Scargall. 2020. libpmem: Low-Level Persistent Memory Support. Apress,
Berkeley, CA, 73–79. https://doi.org/10.1007/978-1-4842-4932-1_6

https://www.intel.com/content/www/us/en/developer/articles/training/pmem-learn-more-series-part-2.html
https://www.intel.com/content/www/us/en/developer/articles/training/pmem-learn-more-series-part-2.html
https://doi.org/10.1145/2980024.2872410
http://arxiv.org/abs/1903.05714
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3419111.3421294
https://doi.org/10.1145/3419111.3421294
https://doi.org/10.1109/DSN.2014.76
https://doi.org/10.1109/IPDPS.2013.69
https://doi.org/10.1109/IPDPS.2013.69
https://www.usenix.org/conference/atc21/presentation/kassa
https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms/chapter-45-options-pricing-gpu
https://developer.nvidia.com/gpugems/gpugems2/part-vi-simulation-and-numerical-algorithms/chapter-45-options-pricing-gpu
https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1145/2872362.2872381
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/3341301.3359628
https://doi.org/10.1145/3307650.3322206
https://doi.org/10.1145/3307650.3322206
https://doi.org/10.1145/3297858.3304043
https://arxiv.org/abs/2103.03330
https://doi.org/10.1145/128765.128770
https://www.usenix.org/conference/fast21/presentation/mohan
https://www.usenix.org/conference/fast21/presentation/mohan
https://doi.org/10.1145/3037697.3037730
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://developer.nvidia.com/cudnn
https://github.com/NVlabs/nvbitfi
https://developer.nvidia.com/rdp/cudnn-archive
https://developer.nvidia.com/rdp/cudnn-archive
https://www.omnisci.com/
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://doi.org/10.1145/3357526.3357568
https://doi.org/10.1145/3357526.3357568
https://docs.pmem.io/ipmctl-user-guide/
https://docs.pmem.io/ipmctl-user-guide/
https://rocksdb.org/
https://www.snia.org/educational-library/persistent-memory-cxl-2021
https://www.snia.org/educational-library/persistent-memory-cxl-2021
https://tinyurl.com/pascal-um
https://tinyurl.com/pascal-um
https://doi.org/10.1007/978-1-4842-4932-1_6

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Shweta Pandey, Aditya K Kamath, and Arkaprava Basu

[83] Tim C. Schroeder. 2011. Peer-to-Peer & Unified Virtual Addressing. CUDA
Webinar (2011). https://developer.download.nvidia.com/CUDA/training/cuda_
webinars_GPUDirect_uva.pdf.

[84] Shobhit Seth. 2006. Understanding the Binomial Option Pricing Mod-
ell. https://www.investopedia.com/articles/investing/021215/examples-
understand-binomial-option-pricing-model.asp. Accessed: 2021-05-06.

[85] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed Shared Persis-
tent Memory. In Proceedings of the 2017 Symposium on Cloud Computing (Santa
Clara, California) (SoCC ’17). Association for Computing Machinery, New York,
NY, USA, 323–337. https://doi.org/10.1145/3127479.3128610

[86] Mustafa Shihab, Karl Taht, andMyoungsoo Jung. 2014. GPUdrive: Reconsidering
Storage Accesses for GPU Acceleration. (2014).

[87] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013. GPUfs: In-
tegrating a File System with GPUs. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Houston, Texas, USA) (ASPLOS ’13). Association for Computing Ma-
chinery, New York, NY, USA, 485–498. https://doi.org/10.1145/2451116.2451169

[88] Tal Ben-Nun. 2017. CuDNN Training. https://github.com/tbennun/cudnn-
training.

[89] Adam Thompson and CJ Newburn. 2019. GPUDirect Storage: A Direct Path
Between Storage and GPU Memory. NVIDIA Developer Blog (August 2019).
https://developer.nvidia.com/blog/gpudirect-storage/.

[90] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven
Swanson. 2016. Morpheus: Creating Application Objects Efficiently for Het-
erogeneous Computing. In Proceedings of the 43rd International Symposium on
Computer Architecture (Seoul, Republic of Korea) (ISCA ’16). IEEE Press, 53–65.
https://doi.org/10.1109/ISCA.2016.15

[91] Usenix. August 2021. NDCTL User Guide. https://docs.pmem.io/ndctl-user-
guide/.

[92] Stratis D. Viglas. 2014. Write-Limited Sorts and Joins for PersistentMemory. Proc.
VLDB Endow. 7, 5 (Jan. 2014), 413–424. https://doi.org/10.14778/2732269.2732277

[93] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. In Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Newport Beach, California, USA) (ASPLOS XVI). Association for Computing Ma-
chinery, New York, NY, USA, 91–104. https://doi.org/10.1145/1950365.1950379

[94] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through Emerging
Non-Volatile Memory. Proc. VLDB Endow. 7, 10 (June 2014), 865–876. https:
//doi.org/10.14778/2732951.2732960

[95] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and Modeling Non-Volatile Memory Systems.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 496–508. https://doi.org/10.1109/MICRO50266.2020.00049

[96] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and Binyu Zang. 2021. Char-
acterizing and Optimizing Remote Persistent Memory with RDMA and NVM.
In 2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Associ-
ation, 523–536. https://www.usenix.org/conference/atc21/presentation/wei

[97] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Luján. 2020.
PMThreads: Persistent Memory Threads Harnessing Versioned Shadow Copies.
In Proceedings of Programming Language Design and Implementation.

[98] Jian Xu and Steven Swanson. 2016. NOVA: A Log-Structured File System for
Hybrid Volatile/Non-Volatile Main Memories. In Proceedings of the 14th Usenix
Conference on File and Storage Technologies (Santa Clara, CA) (FAST’16). USENIX
Association, USA, 323–338.

[99] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In 18th USENIX Conference on File and Storage Technologies (FAST
20). USENIX Association, Santa Clara, CA, 169–182. https://www.usenix.org/
conference/fast20/presentation/yang

[100] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Chang-
sheng Xie, and Xubin He. 2020. MatrixKV: Reducing Write Stalls and Write
Amplification in LSM-tree Based KV Stores with Matrix Container in NVM. In
2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Associa-
tion, 17–31. https://www.usenix.org/conference/atc20/presentation/yao

[101] Jie Zhang, David Donofrio, John Shalf, Mahmut T. Kandemir, and Myoungsoo
Jung. 2015. NVMMU: A Non-Volatile Memory Management Unit for Heteroge-
neous GPU-SSDArchitectures. In Proceedings of the 2015 International Conference
on Parallel Architecture and Compilation (PACT) (PACT ’15). IEEE Computer
Society, USA, 13–24. https://doi.org/10.1109/PACT.2015.43

[102] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong Zhang.
2015. Mega-KV: A Case for GPUs to Maximize the Throughput of in-Memory
Key-Value Stores. Proc. VLDB Endow. 8, 11 (July 2015), 1226–1237. https:
//doi.org/10.14778/2809974.2809984

[103] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.
ChameleonDB: A Key-Value Store for Optane Persistent Memory. In Proceedings
of the Sixteenth European Conference on Computer Systems (Online Event, United
Kingdom) (EuroSys ’21). Association for Computing Machinery, New York, NY,
USA, 194–209. https://doi.org/10.1145/3447786.3456237

A ARTIFACT APPENDIX
A.1 Abstract
The artifact provides source for the proposed system - GPM, which
allows a GPU to leverage PM. The artifact consists of GPMbench
and libGPM. GPMbench comprises of 9 GPU-accelerated workloads
divided into three categories. libGPM provides a CUDA library
that allows programmers to leverage PM from GPU. The artifact
allows users to reproduce key results from the paper, including
Figure 1, Figure 9 and Table 5. The hardware must contain both an
Nvidia GPU and an Intel Optane DCPMM attached to an Intel Xeon
server to run GPM and reproduce the results. The measurement
infrastructure is provided using Makefiles and bash scripts.

A.2 Artifact check-list (meta-information)
• Compilation: CUDA 11, GCC 9.3.0, CuDNN 8.2.
• Binary: Included for x86-64.
• Data set: Scripts are provided to download/generate datasets.
• Run-time environment:Workloads need CUDA 11, driver version
>= 450 and CuDNN 8.2. The Optane PMEM should be configured in
app-direct mode with all DIMMs interleaved. The scripts are written
for Ubuntu 20.04 and need sudo privilige.

• Hardware: 1 Nvidia Turing GPU (preferably Titan RTX 72 SMs,
24 GB GDDR6) 2 Intel Optane DCPMM (preferably 8 x 128 GB Intel
Optane NVDIMM, with 2 DIMMs per socket) attached to 3 Intel
Xeon server (preferably Xeon Gold 6242 (4×16 cores) @ 2.80GHz)
4 PCIe 3.0 x 16 interconnect between the CPU and the GPU

• Execution: CUDA kernels are executed on the GPU which directly
access the PM. The execution framework is provided usingMakefiles
and bash scripts.

• Output: A tab separated file generated for each experiment.
• How much disk space required (approximately)?: GPMbench
requires approx 50GBs of persistent memory.

• How much time is needed to prepare workflow (approxi-
mately)?: 30 mins

• How much time is needed to complete experiments (approxi-
mately)?: 6 hours

• Publicly available?: Yes.
https://github.com/csl-iisc/GPM-ASPLOS22.git and
https://doi.org/10.5281/zenodo.5847956

• Archived (provide DOI)?: Yes. 10.5281/zenodo.5847956

A.3 Description
The artifact contains the source for GPMbench and libGPM. It
allows to reproduce results the following results:

• Figure 1: Benefits of GPM over CPU with PM. Both Figure 1a
and Figure 1b.

• Figure 9: Speedup of CAP-mm, GPM and GPUfs over CAP-fs.
• Figure 10: Understanding GPM’s performance and eADR.
• Figure 11a: Speedup due to HCL.
• Table 5: Restoration latency of GPM.

A.3.1 How to access. The artifact is made available in the GitHub
repository https://github.com/csl-iisc/GPM-ASPLOS22 and also at
https://doi.org/10.5281/zenodo.5847956.

A.3.2 Hardware dependencies. To support GPM, a system must
have both GPU and NVM. We recommend the following hardware
configuration: 1 Nvidia Turing GPU (preferably Titan RTX 72

https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://www.investopedia.com/articles/investing/021215/examples-understand-binomial-option-pricing-model.asp
https://www.investopedia.com/articles/investing/021215/examples-understand-binomial-option-pricing-model.asp
https://doi.org/10.1145/3127479.3128610
https://doi.org/10.1145/2451116.2451169
https://github.com/tbennun/cudnn-training
https://github.com/tbennun/cudnn-training
https://developer.nvidia.com/blog/gpudirect-storage/
https://doi.org/10.1109/ISCA.2016.15
https://docs.pmem.io/ndctl-user-guide/
https://docs.pmem.io/ndctl-user-guide/
https://doi.org/10.14778/2732269.2732277
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.14778/2732951.2732960
https://doi.org/10.14778/2732951.2732960
https://doi.org/10.1109/MICRO50266.2020.00049
https://www.usenix.org/conference/atc21/presentation/wei
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/atc20/presentation/yao
https://doi.org/10.1109/PACT.2015.43
https://doi.org/10.14778/2809974.2809984
https://doi.org/10.14778/2809974.2809984
https://doi.org/10.1145/3447786.3456237
https://github.com/csl-iisc/GPM-ASPLOS22.git
https://doi.org/10.5281/zenodo.5847956
https://github.com/csl-iisc/GPM-ASPLOS22
https://doi.org/10.5281/zenodo.5847956

GPM: Leveraging Persistent Memory from a GPU ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

SMs, 24 GB GDDR6) 2 Intel Optane DCPMM (preferably 8 x 128
GB Intel Optane NVDIMM, with 2 DIMMs per socket) in app-direct
mode and interleaved memory across all DIMMs attached to a
3 Intel Xeon server (preferably Xeon Gold 6242 (4×16 cores) @
2.80GHz) 4 PCIe 3.0 x 16 interconnect between the CPU and the
GPU

A.3.3 Software dependencies. The artifact needs CUDA 11, CuDNN
8.2 and nvidia driver version >= 450. Follow the instructions in the
README or from nvidia [73] to downolad and install CuDNN 8.2.
The NVM setup requires the following libraries - NDCTL, DAX-
CTL [91] and IPMCTL [78]. The libraries along with all the depen-
dencies are maintained in dependencies.sh and can be installed as
follows:
$ sudo ./dependencies.sh

The script also installs the dependencies needed for turning DDIO
on and off, it is needed for persisting data from GPU.

To configure Optance PMM in app-direct mode, follow the steps
mentioned below with sudo privilege.

$ cd pmem-setup/
$ #This step will tear down any older PMEM
config (e.g., memory-mapped).
$ sudo ./teardown.bashrc
$ #This step is going to interleave the DIMMs,
then reboot the machine.
$ sudo ./preboot.bashrc
$ #Once the system has rebooted run the
following commands as root to set Optane PMM
in app-direct mode.
$ sudo su
sudo ./config.bashrc

All the experiments are performed assuming Ubuntu 20.04 and a
GCC version of 9.3.

A.3.4 Data sets. Scripts are provided to generate or download data
sets.

A.4 Installation
The artifact can be downloaded and accessed as -

$ git clone https://github.com/csl-iisc/ \
GPM-ASPLOS22.git
$ cd GPM-ASPLOS22

A.5 Experiment workflow
The outermost directory consists of two folders: Figure1 and GPM-
Bench_LibGPM. Figure1 contains the run-time infrastructure for
both Figure 1a and Figure 1b. GPMBench_LibGPM contains the
source for both GPMbench and libGPM along with the run-time
infrastructure for Figure 9, 10, 11a and Table 5.

The experiments must be run exclusively i.e., no compute or
memory-intensive application should be running concurrently. We
provide a Makefile that compiles, executes and generates a tab-
separated report for the figures 1, 9, 10, 11a and table 5. Individual
experiments can be run as:
$ make figure_1 #To run figure 1 (1a and 1b)
$ make figure_9 #To compile and run figure 9
$ make figure_10 #To compile and run figure 10
$ make figure_11a #To compile and run figure 11a
$ make table_5 #To compile and run table 5
$ make all #To run all figures

The raw numbers can be obtained from the results folder present
in the outermost directory.

A.6 Evaluation and expected results
For each key result, a tab separated file is generated. The reports/
folder contains all the generated reports. The reports can bematched
against the figures reported in the paper. The generated reports are
named: out_figure1a.txt, out_figure1b.txt for Figure 1, out_figure9.txt
for Figure 9, out_figure10.txt for Figure 10, out_figure11a.txt for
Figure 11 and out_table5.txt for Table 5. To obtain the reports, use
the following command:

$ make out_figure_1
$ make out_figure_9
$ make out_figure_10
$ make out_figure_11a
$ make out_table_5

	Abstract
	1 Introduction
	2 Background
	3 The case for GPM and its design
	3.1 GPM's design philosophy
	3.2 Understanding benefits of GPM
	3.3 Discussions

	4 GPMbench: Use cases for GPM
	4.1 Transactional updates to PM
	4.2 Iterative long-running kernels
	4.3 Native persistence

	5 libGPM: The library enabling GPM
	5.1 Persistency primitives
	5.2 Enabling logging to PM from GPUs
	5.3 Enabling checkpointing to PM for GPUs
	5.4 Enabling native persistence for GPUs

	6 Evaluation
	6.1 Performance
	6.2 Recovery analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

